Печать
Просмотров: 20184

Научная группа профессора В.П. Толстого

Обновлено

Научная группа кафедры химии твёрдого тела

Программируемый послойный синтез мультислоёв гибридных соединений и создание новых функциональных наноматериалов на их основе

Состав научной группы

htt Tolstoy VP

Толстой Валерий Павлович

Профессор, доктор химических наук

v.tolstoy@spbu.ru

htt Gulina LB

Гулина Лариса Борисовна

доцент, доктор химических наук,

l.gulina@spbu.ru

Meleshko Aleksandra Aleksandrovna

Мелешко Александра Александровна

Научный сотрудник, кандидат технических наук

a.meleshko@spbu.ru

htt Kuklo LI

Кукло Леонид Игоревич

Инженер, кандидат химических наук

 Чувило Юлиана Дмитриевна лаборант исследователь магистрант Чувило Юлиана Дмитриевна

 Лаборант-исследователь магистрант

Golubeva Anastasiya

Голубева Анастасия Александровна

Инженер-исследователь

 Никитин Кирилл Денисович лаборант исследователь магистрант

Никитин Кирилл Денисович

Лаборант-исследователь, магистрант

 Заказнова Александра Константиновна лаборант исследователь бакалавр

Заказнова Александра

Лаборант-исследователь бакалавр

 Ермакова Ксения Евгеньевна лаборант исследователь бакалавр

Ермакова Ксения

Лаборант-исследователь-бакалавр

 Москвина Татьяна Андреевна лаборант исследователь бакалавр

Москвина Татьяна

Лаборант-исследователь, бакалавр

Тематика научной работы

TolstoyVP 04TolstoyVP 05

Тема 1. Создание новых маршрутов синтеза мультислоёв гибридных неорганических и органических соединений и получение новых функциональных наноматериалов на их основе

Руководитель темы профессор, д.х.н. Толстой Валерий Павлович.

TolstoyVP 06TolstoyVP 07tolstoy1

tolstoy2tolstoy3

Тема 2. Синтез наноразмерных кристаллов неорганических соединений с участием химических реакций на границе раздела газ-жидкость

Руководитель темы старший научный сотрудник, к.х.н. Гулина Лариса Борисовна.

guli 1 guli 2 TolstoyVP 12

guli 3

Тема 3. Разработка новых способов синтеза биоактивных наноматериалов.

Руководитель темы научный сотрудник, к.т.н. Мелешко Александра Александровна.

TolstoyVP 14

Тема 4. Разработка новых высокопроизводительных автоматизированных установок для послойного синтеза наноразмерных структур.

 

Руководитель темы инженер, к.х.н. Кукло Леонид Игоревич.

 

tolstoy4tolstoy5

Публикации

2024 год

  1. J. Mujtaba, A. Kuzin, G. Chen, F. Zhu, F.S. Fedorov, B. Mohan, G. Huang, V. Tolstoy, at al., Synergistic Integration of Hydrogen Peroxide Powered Valveless Micropumps and Membraneless Fuel Cells: A Comprehensive Review (2024) Advanced Materials Technologies 9 (14) 2302052, https://doi.org/10.1002/admt.202302052.
  2. A. Meleshko, V. Tolstoy, Redox Reactions in a Layer of Adsorbed Cu(II) and Fe(II) Ions and Synthesis of 2D CuFeO2 Ultrathin Nanosheets by Successive Ionic Layer Deposition (2024) Russ. J. Gen. Chem. 94 (Suppl 1), S13–S19, https://doi.org/10.1134/S1070363224140020.
  3. V. Tolstoy, K. Nikitin, A. Kuzin, F. Zhu, X. Li, G. Goltsman, D. Gorin, G. Huang, Rapid synthesis of Pt (0) motors-microscrolls on a nickel surface via H2PtCl6-induced galvanic replacement reaction (2024) Chem. Commun. 60 (23) 3182-3185, https://doi.org/10.1039/D3CC05766F.
  4. V. Tolstoy, E. Shilovskikh, L. Gulina, The effect of Ag(0) colloidal crystals and nanoribbons formation as a result of the redox reaction between Ce (III) and Ag (I) cations occurring on the surface of an aqueous solution of their salts mixture(2024) Nanosyst.: Phys., Chem., Mathem., 15 (1) 98-104, https://doi.org/10.17586/2220-8054-2024-15-1-98-103.
  5. M. Rastgoo-Deylami, A. Esfandiar, V. Tolstoy, Selenium-doped mixed metal oxide nanoparticles decorated on g-C3N4 and MXene sheets as promising bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries (2024) Sust. Energy & Fuels 8 (9) 2038-2049, https://doi.org/10.1039/D3SE01419C.
  6. B. Zhong, M. Cai, S. Liu, J. He, J. Wang, K. Feng, V. Tolstoy, L. Jiang, C Li, at al., Modulation of the Structure‐function Relationship of the “nano‐greenhouse effect” towards Optimized Supra‐photothermal Catalysis (2024) Chem.–An Asian Journal, 19 (5) e202301077, https://doi.org/10.1002/asia.202301077.
  7. M. Kaneva, L. Gulina, V. Tolstoy, Study of the Formation Features of Pt (0) Nanoparticles at the Interface of Nickel–Aqueous Solution of Reagents under SILD Conditions and Their Electrocatalytic Properties (2024) Russ J. of Electrochem. 60 (3) 181-190, https://doi.org/10.1134/S1023193524030078.
  8. V. Tolstoy, D. Danilov, A. Meleshko, Effect of the formation of open microcapsules with Mn3O4 walls during hydrolysis of the MnSO4 salt solution droplets deposited on the alkaline solution surface (2024) Mend. Commun. 34 (3) 430-432, https://doi.org/10.1016/j.mencom.2024.04.038.
  9. S. Jaberi, P. Asen, A. Esfandiar, V. Tolstoy, MXene/carbon hybrid nanostructures and heteroatom-doped derivatives for enhanced electrochemical energy storage (2024) J. of Energy Storage 90, 111751, https://doi.org/10.1016/j.est.2024.111751.
  10. Y. Xiao, K. Feng, G. Dawson, V. Tolstoy, X. An, C. Li, L. He, A feasible interlayer strategy for simultaneous light and heat management in photothermal catalysis (2024) iScience 27 (6) 109792, https://doi.org/10.1016/j.isci.2024.109792.
  11. L. Gulina, V. Tolstoy, I. Murin, Crystallization of New Inorganic Fluoride Nanomaterials at Soft Chemistry Conditions and Their Application Prospects (2024) Russ. J. of Inorg. Chem., 1-12, https://doi.org/10.1134/S0036023623603070.
  12. V. Tolstoy, L. Gulina, E. Shilovskikh, 2D Nanocrystals of Zinc and Manganese (II, III) Oxides with Morphology of Perforated Nanoflakes Obtained Using Hydrolysis Reactions of Mn(OAc)2 and Zn(OAc)2 by Gaseous NH3 (2024) Russ. J. of Inorg. Chem., 69 (3) 311-318. https://doi.org/10.31857/S0044457X24030059.
  13. A. Golubeva, I. Kolesnikov, V. Tolstoy, Faсile synthesis of vase-like CeO2 microcapsules and their ordered arrays using the technique of spraying Ce(NO3)3 solution microdroplets on the alkali solution surface (2024) Ceram. Intern. (in press).
  14. L. Gulina, E. Shilovskikh, V. Tolstoy, Interface-assisted synthesis of Ag/Ceria composites for the detection and photodegradation of organic dyes (2024) Coll. and Surf. A: Physicochem. and Eng. Aspects, 701, 134897, https://doi.org/10.1016/j.colsurfa.2024.134897.

2023 год

  1. V.P. Tolstoy, L.B. Gulina, A.A. Meleshko, 2D nanocrystals of metal oxides and hydroxides with nanosheet/nanoflake morphology in biomedicine, energy and chemistry (2023)Russian Chemical Reviews, 92 (3) RCR5071. DOI:10.57634/RCR5071.
  2. L.B. Gulina, P.P. Senega, V.P. Tolstoy, Strategy for Patterning Titania Dendrites by Gas–Solution Interaction at Droplet Surfaces (2023)ACS Omega, 8 (37) pp. 33831-33837. DOI:10.1021/acsomega.3c04459.
  3. G. Korotcenkov, V.P. Tolstoy, Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations—Part 2: Porous 2D Nanomaterials (2023) Nanomaterials, 13 (2) 237. DOI:10.3390/nano13020237.
  4. L.B. Gulina, I.A. Kasatkin, V.P. Tolstoy, D.V. Danilov, N.V. Platonova, I.V. Murin, Design of Pb1− xSrxF2 hollow crystals with gas–solution interfacial reactions (2023) .CrystEngComm., 25 (47) pp. 6644-6649. DOI: 10.1039/D3CE00943B.
  5. V.P. Tolstoy, M.V. Kaneva, Successive Ionic layers Deposition of Multilayers of [n(Co(OH)2mPt(0)]k Nanocomposites and Their Structural and Chemical Features (2023) Russian Journal of General Chemistry, 93 (1) pp. 85-90. DOI: 10.1134/ S1070363223010127. 
  6. L.B. Gulina, P.O. Skripnyak, V.P. Tolstoy, Synthesis of ceria nanosheets on the surface of Ce (NO3)3 solution by interaction with gaseous ammonia (2023)Mendeleev Communications, 33 (1) pp. 124-126. DOI:10.1016/j.mencom.2023.01.039.
  7. Biqing Zhong, Mujin Cai, Shuang Liu, Jiari He, Jiaqi Wang, Kai Feng, Valeri Tolstoy, Lin Jiang, Chaoran Li, Xingda An, and Le He, Modulation of the structure-function relationship of the “nanogreenhouse effect” towards optimized supra-photothermal catalysis (2023) Chemistry an Asian Journal, e202301077. DOI:10.1002/asia.202301077.

2022 год

  1. M.V. Kaneva, V.P. Tolstoy, Redox Reactions in a Layer of Adsorbed Mn (II) Cations and RuO4 Molecules. Synthesis of Manganese Oxide Doped with Ruthenium by Successive Ionic Layer Deposition (2022) Russian Journal of General Chemistry, 92 (11) pp. 2339-2345. DOI:10.1134/S1070363222110184.
  2. E.V. Batishcheva, V.P. Tolstoy, Formation of Arrays of 1D Copper (II) Oxide Nanocrystals on the Nickel Surface upon Its Galvanic Replacement in a CuCl2 Solution and Their Electrocatalytic Properties in the …(2022) Russian Journal of Inorganic Chemistry, 67 (6) pp. 898-903. DOI:10.1134/S0036023622060055.
  3. V.P. Tolstoy, A.A. Meleshko, A.A. Golubeva, E.V. Bathischeva, The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution … (2022) Colloids and Interfaces, 6 (2) 32. DOI:10.3390/colloids6020032.
  4. M.V. Kaneva, L.B. Gulina, V.P. Tolstoy, Pt nanoparticles synthesized by successive ionic layers deposition method and their electrocatalytic properties in hydrogen evolution reaction during water splitting in the … (2022) Journal of Alloys and Compounds, 901, 163640. DOI:10.1016/j.jallcom.2022.163640.
  5. M.V. Kaneva, A.A. Reveguk, V.P. Tolstoy, SILD-preparation of nanostructured Ru(0)x-RuO2· nH2O thin films: Effect of deposition cycles on electrocatalytic properties (2022) Ceramic International, 48 (8) pp. 11672-11677. DOI:10.1016/j.ceramint.2022.01.025.
  6. V.P. Tolstoy, A.A. Golubeva, E.O. Kolomina, D.V. Navolotskaya, S.S. Ermakov, New Chemoresistive Gas Sensors with Active Elements Prepared by Layer-by-Layer Chemical Assembly with the Participation of Reagent Solutions and Their Analytical Capabilities (2022) Journal of Analytical Chemistry, 77 (3) pp. 257-276. DOI:10.31857/S0044450222030112.
  7. V.P. Tolstoy, A.A. Meleshko, Hydrolysis of NiSO4 and FeSO4 Mixture in Microdrops of Their Aqueous Solution Deposited at the Surface of an Alkali Solution and Obtaining Vase-Like Microcapsules with Walls of … (2022) Russian Journal of General Chemistry, 92 (2) pp. 276-280. DOI:10.1134/S1070363222020190.
  8. M.V. Kaneva, E.V. Borisov, V.P. Tolstoy, Pt (0) microscrolls obtained on nickel surface by galvanic replacement reaction in H2PtCl6 solution as the basis for creating new SERS substrates (2022) Nanosystems: Physics, Chemistry, Mathematics, 13 (5), pp. 509-513. DOI: 10.17586/2220-8054-2022-13-5-509-513.

2021 год

  1. Mujtaba, J., Liu, J., Dey, K.K., Li, T., Chakraborty, R., Xu, K., Makarov, D., Barmin, R.A., Gorin, D.A., Tolstoy, V.P., Huang, G., Solovev, A.A., Mei, Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications (2021) Advanced Materials, 33 (22), article № 2007465, DOI: 10.1002/adma.202007465.
  2. Kaneva, M.V., Tolstoy, V.P. The “rolling up” effect of platinum layer obtained on nickel surface by interaction with solution of H2 H2PtCl6 and its electrocatalytic properties in hydrogen evolution reaction during water electrolysis in alkaline medium (2021) Nanosystems: Physics, Chemistry, Mathematics, 12 (5), pp. 630-633. DOI: 10.17586/2220-8054-2021-12-5-630-633.
  3. Naeem, S., Naeem, F., Mujtaba, J., Shukla, A.K., Mitra, S., Huang, G., Gulina, L., Rudakovskaya, P., Cui, J., Tolstoy, V., Gorin, D., Mei, Y., Solovev, A.A., Dey, K.K. Oxygen generation using catalytic nano/micromotors (2021) Micromachines, 12 (10), article № 1251. DOI: 10.3390/mi12101251.
  4. Gorokh, G., Bogomazova, N., Taleb, A., Zhylinski, V., Galkovsky, T., Zakhlebayeva, A., Lozovenko, A., Iji, M., Fedosenko, V., Tolstoy, V. Spatially ordered matrix of nanostructured tin–tungsten oxides nanocomposites formed by ionic layer deposition for gas sensing (2021) Sensors, 21 (12), article № 4169. DOI: 10.3390/s21124169.
  5. Popkov, V.I., Tolstoy, V.P. Controllable wettability tuning of the stainless steel surface through successive ionic layer deposition of Zn-Fe layered double hydroxysulfate (2021) Surface and Coatings Technology, 409, article № 126914. DOI: 10.1016/j.surfcoat.2021.126914.

2020 год

  1. Толстой В.П., Основы нанотехнологии ионного наслаивания, СПб, 2020, 142 стр., репозиторий СПбГУ (открытый доступ), https://elibrary.ru/item.asp?id=42596597.
  2. Strykanova, V.V., Gulina, L.B., Tolstoy, V.P., Tolstobrov, E.V., Danilov, D.V., Skvortsova, I. Synthesis of the FeOOH Microtubes with Inner Surface Modified by Ag Nanoparticles (2020) ACS Omega, 5 (25), pp. 15728-15733. DOI: 10.1021/acsomega.0c02258.
  3. Gulina, L.B., Tolstoy, V.P., Solovev, A.A., Gurenko, V.E., Huang, G., Mei, Y. Gas-Solution Interface Technique as a simple method to produce inorganic microtubes with scroll morphology, (2020) Progress in Natural Science: Materials International, 30 (3), pp. 279-288. DOI: 10.1016/j.pnsc.2020.05.001.
  4. Bahmei Fateme, Bahramifar Nader, Younesi Habibollah, Tolstoy Valeri, Synthesis of porous graphene nanocomposite and its excellent adsorption behavior for Erythromycin antibiotic, Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (2), P. 214–222.
  5. Gulina, L.B., Privalov, A.F., Weigler, M., Murin, I.V., Tolstoy, V., Vogel, M. Anomalously High Fluorine Mobility in Tysonite-Like LaF3:ScF3 Nanocrystals: NMR Diffusion Data, (2020) Applied Magnetic Resonance, DOI: 10.1007/s00723-020-01247-5.
  6. Meleshko, A.A., Tolstoy, V.P., Afinogenov, G.E., Levshakova, A.S., Afinogenova, A.G., Muldiyarov, V.P., Vissarionov, S.V., Linnik, S.A. Prospects of hydroxyapatite-based nanomaterials application synthesized by layer-by-layer method for pediatric traumatology and orthopedics (2020) Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 8 (2), pp. 217-230. DOI: 10.17816/PTORS33824.
  7. Absalan, Y., Alabada, R., Ryabov, M., Tolstoy, V., Butusov, L., Nikolskiy, V., Kopylov, V., Gholizadeh, M., Kovalchukova, O. Removing organic harmful compounds from the polluted water by a novel synthesized cobalt(II) and titanium(IV) containing photocatalyst under visible light (2020) Environmental Nanotechnology, Monitoring and Management, 14, article № 100304, DOI: 10.1016/j.enmm.2020.100304.
  8. Tolstoy, V.P., Kaneva, M.V., Lobinsky, A.A., Koroleva, A.V. Direct successive ionic layer deposition of nanoscale iridium and tin oxide on titanium surface for electrocatalytic application in oxygen evolution reaction during water electrolysis in acidic medium (2020) Journal of Alloys and Compounds, 834, article № 155205, DOI: 10.1016/j.jallcom.2020.155205.
  9. Gulina, L.B., Weigler, M., Privalov, A.F., Kasatkin, I.A., Groszewicz, P.B., Murin, I.V., Tolstoy, V.P., Vogel, M. Morphological and dynamical evolution of lanthanum fluoride 2D nanocrystals at thermal treatment (2020) Solid State Ionics, 352, article № 115354, DOI: 10.1016/j.ssi.2020.115354.
  10. Tolstoy, V., Kaneva, M., Fedotova, N., Levshakova, A. Low temperature synthesis of Сu0.3IrOx·nH2O nanocrystals by successive ionic layer deposition and their electrocatalytic properties in oxygen evolution reaction during water splitting in acidic medium (2020) Ceramics International, 46 (12), pp. 20122-20128, DOI: 10.1016/j.ceramint.2020.05.087.
  11. Popkov, V.I., Tolstoy, V.P., Semenov, V.G. Synthesis of phase-pure superparamagnetic nanoparticles of ZnFe2O4 via thermal decomposition of zinc-iron layered double hydroxysulphate (2020) Journal of Alloys and Compounds, 813, article № 152179, DOI: 10.1016/j.jallcom.2019.152179.

2019 год

  1. Tolstoy, V.P., Vladimirova, N.I., Gulina, L.B. Formation of Ordered Honeycomb-like Structures of Manganese Oxide 2D Nanocrystals with the Birnessite-like Structure and Their Electrocatalytic Properties during Oxygen Evolution Reaction upon Water Splitting in an Alkaline Medium (2019) ACS Omega, 4 (26), pp. 22203-22208, DOI: 10.1021/acsomega.9b03499.
  2. Tolstoy, V.P., Vladimirova, N.I., Gulina, L.B. Ordered honeycomb-like network of MnO2·nH2O nanocrystals formed on the surface of a Mn(OAc)2 solution drop upon interaction with O3 gas (2019) Mendeleev Communications, 29 (6), pp. 713-715, DOI: 10.1016/j.mencom.2019.11.039.
  3. Gurenko, V., Gulina, L., Tolstoy, V. Sol–gel–xerogel transformations in the thin layer at the salt solution–gaseous reagent interface and the synthesis of new materials with microtubular morphology (2019) Journal of Sol-Gel Science and Technology, 92 (2), pp. 342-348, DOI: 10.1007/s10971-019-04949-w.
  4. Korotcenkov, G., Tolstoy, V., Brinzari, V. Morphological engineering of SnO 2 and In 2O 3 films deposited by spray pyrolysis (2019) Bulletin of Materials Science, 42 (5), article № 212, DOI: 10.1007/s12034-019-1910-5.
  5. Tolstoy, V.P., Kuklo, L.I., Gulina, L.B. Ni(II) doped FeOOH 2D nanocrystals, synthesized by Successive Ionic Layer Deposition, and their electrocatalytic properties during oxygen evolution reaction upon water splitting in the alkaline medium (2019) Journal of Alloys and Compounds, 786, pp. 198-204. DOI: 10.1016/j.jallcom.2019.01.324.
  6. Tolstoy, V.P., Lobinsky, A.A., Kaneva, M.V. Features of inorganic nanocrystals formation in conditions of successive ionic layers deposition in water solutions and the Co(II)Co(III) 2D layered double hydroxide synthesis (2019) Journal of Molecular Liquids, 282, pp. 32-38. DOI: 10.1016/j.molliq.2019.02.067.
  7. Popkov, V.I., Tolstoy, V.P., Omarov, S.O., Nevedomskiy, V.N. Enhancement of acidic-basic properties of silica by modification with CeO2-Fe2O3 nanoparticles via successive ionic layer deposition (2019) Applied Surface Science, 473, pp. 313-317. DOI: 10.1016/j.apsusc.2018.12.129.
  8. Gulina, L.B., Schikora, M., Privalov, A.F., Weigler, M., Tolstoy, V.P., Murin, I.V., Vogel, M. Influence of Morphology of LaF 3 Nano-crystals on Fluorine Dynamics Studied by NMR Diffusometry (2019) Applied Magnetic Resonance, 50 (4), pp. 579-588. DOI: 10.1007/s00723-018-1077-z.
  9. Popkov, V.I., Tolstoy, V.P., Nevedomskiy, V.N. Peroxide route to the synthesis of ultrafine CeO2-Fe2O3 nanocomposite via successive ionic layer deposition (2019) Heliyon, 5 (3), статья № e01443, DOI: 10.1016/j.heliyon.2019.e01443.
  10. Tolstoy, V.P., Gulina, L.B., Golubeva, A.A., Ermakov, S.S., Gurenko, V.E., Navolotskaya, D.V., Vladimirova, N.I., Koroleva, A.V. Thin layers formed by the oriented 2D nanocrystals of birnessite-type manganese oxide as a new electrochemical platform for ultrasensitive nonenzymatic hydrogen peroxide detection (2019) Journal of Solid State Electrochemistry, 23 (2), pp. 573-582. DOI: 10.1007/s10008-018-04165-6.
  11. Lobinsky, A.A., Tolstoy, V.P. Synthesis of CoAl-LDH nanosheets and N-doped graphene nanocomposite via Successive Ionic Layer Deposition method and study of their electrocatalytic properties for hydrogen evolution in alkaline media (2019) Journal of Solid State Chemistry, 270, pp. 156-161. DOI: 10.1016/j.jssc.2018.09.041.
  12. Laptenkova, A.V., Tolstoy, V.P., Selyutin, A.A. Layer-by-layer synthesis of ferrocyanides of transition metals, as a new method of controlled self-assembly of cathodic materials (2019) AIP Conference Proceedings, 2064, article № 030008, DOI: 10.1063/1.5087670.
  13. Kodinzev, I., Lobinsky, A., Tolstoy, V. Successive ionic layer deposition of NiPx nanolayers on the surface of nickel foam and their electrocatalytic properties for oxygen evolution reaction upon water splitting in alkaline medium (2019) AIP Conference Proceedings, 2064, article № 030005, DOI: 10.1063/1.5087667.
  14. Gulina, L.B., Gurenko, V.E., Tolstoy, V.P., Mikhailovskii, V.Y., Koroleva, A.V. Interface-Assisted Synthesis of the Mn3-xFexO4 Gradient Film with Multifunctional Properties (2019) Langmuir, DOI: 10.1021/acs.langmuir.9b02338.

2018 год

  1. Gulina, L.B., Tolstoy, V.P., Lobinsky, A.A., Petrov, Y.V. Formation of Fe and Fe2O3 Microspirals via Interfacial Synthesis (2018) Particle and Particle Systems Characterization, 35 (9), статья № 1800186, DOI: 10.1002/ppsc.201800186.
  2. Gulina, L.B., Tolstoy, V.P., Petrov, Y.V., Danilov, D.V. Interface-Assisted Synthesis of Single-Crystallрine ScF3 Microtubes (2018) Inorganic Chemistry, 57 (16), pp. 9779-9781. DOI: 10.1021/acs.inorgchem.8b01375.
  3. Gulina, L.B., Tolstoy, V.P., Kasatkin, I.A., Fateev, S.A. Flower-like silver nanocrystals: facile synthesis via a gas–solution interface technique (2018) Journal of Materials Science, 53 (11), pp. 8161-8169. DOI: 10.1007/s10853-018-2164-0.
  4. Gulina, L., Tolstoy, V., Kuklo, L., Mikhailovskii, V., Panchuk, V., Semenov, V. Synthesis of Fe(OH)3 Microtubes at the Gas–Solution Interface and Their Use for the Fabrication of Fe2O3 and Fe Microtubes (2018) European Journal of Inorganic Chemistry, 2018 (17), pp. 1842-1846. DOI: 10.1002/ejic.201800182.
  5. Lobinsky, A.A., Tolstoy, V.P. Synthesis of 2D Zn-Co LDH nanosheets by a successive ionic layer deposition method as a material for electrodes of high-performance alkaline battery-supercapacitor hybrid devices (2018) RSC Advances, 8 (52), pp. 29607-29612. DOI: 10.1039/c8ra00671g.
  6. A. A. Lobinsky, V. P. Tolstoy, I. A. Kodinzev, Electrocatalytic properties of NiOOH nanolayers, synthesized by successive ionic layer deposition, during the oxygen evolution reaction upon water splitting in the alkaline medium Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (5), P. 669–675, DOI 10.17586/22208054201895669675.
  7. Kasatkin, I.A., Gulina, L.B., Platonova, N.V., Tolstoy, V.P., Murin, I.V. Strong negative thermal expansion in the hexagonal polymorph of ScF3 (2018) CrystEngComm, 20 (20), pp. 2768-2771. DOI: 10.1039/c8ce00257f.

2017 год

  1. Gulina, L.B., Tolstoy, V.P., Tolstobrov, E.V. Facile synthesis of 2D silver nanocrystals by a gas–solution interface technique (2017) Mendeleev Communications, 27 (6), pp. 634-636. DOI: 10.1016/j.mencom.2017.11.033.
  2. Kodintsev, I., Tolstoy, V., Lobinsky, A. Room temperature synthesis of composite nanolayer consisting of AgMnO2 delafossite nanosheets and Ag nanoparticles by successive ionic layer deposition and their electrochemical properties (2017) Materials Letters, 196, pp. 54-56. DOI: 10.1016/j.matlet.2017.02.130.
  3. Lobinsky, A.A., Tolstoy, V.P. Synthesis of γ-MnOOH nanorods by successive ionic layer deposition method and their capacitive performance (2017) Journal of Energy Chemistry, 26 (3), pp. 336-339. DOI: 10.1016/j.jechem.2017.04.015.
  4. Tolstoy, V.P., Kodintsev, I.A., Reshanova, K.S., Lobinsky, A.A. A brief review of metal oxide (hydroxide)-graphene nanocomposites synthesis by layer-by-layer deposition from solutions and synthesis of CuO nanorods-graphene nanocomposite (2017) Reviews on Advanced Materials Science, 49 (1), pp. 28-37.
  5. Gulina, L.B., Tolstoy, V.P., Kasatkin, I.A., Murin, I.V. Facile synthesis of scandium fluoride oriented single-crystalline rods and urchin-like structures by a gas-solution interface technique (2017) CrystEngComm, 19 (36), pp. 5412-5416. DOI: 10.1039/c7ce01396e.
  6. V. E. Gurenko, V. P. Tolstoy, L. B. Gulina, The effect of microtube formation with walls, containing Fe3O4 nanoparticles, via gassolution interface technique by hydrolysis of the FeCl2 and FeCl3 mixed solution with gaseous ammonia, Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (4), P. 471–475.
  7. Gulina, L.B., Tolstoy, V.P., Kasatkin, I.A., Kolesnikov, I.E., Danilov, D.V. Formation of oriented LaF3 and LaF3:Eu3+ nanocrystals at the gas − Solution interface (2017) Journal of Fluorine Chemistry, 200, pp. 18-23. DOI: 10.1016/j.jfluchem.2017.05.006.

2016 год

  1. Gulina, L.B., Tolstoy, V.P., Lobinsky, A.A., Petrov, Y.V. The interaction of gaseous SiF4 and HF with surface of aqueous solution of LaCl3 leading to the formation of the LaF3–SiO2·nH2O nanocomposite and microtubes on its basis (2016) Russian Journal of General Chemistry, 86 (12), pp. 2689-2692. DOI: 10.1134/S1070363216120197.
  2. Kodintsev, I., Reshanova, K., Tolstoy, V. Layer-by-layer synthesis of metal oxide (or hydroxide)-graphene nanocomposites. the synthesis of CuO nanorods-graphene nanocomposite (2016) AIP Conference Proceedings, 1748, статья № 040005, DOI: 10.1063/1.4954357.
  3. Lobinsky, A.A., Tolstoy, V.P., Gulina, L.B. A novel oxidation-reduction route for successive ionic layer deposition of NiO1+x·nH2O nanolayers and their capacitive performance (2016) Materials Research Bulletin, 76, pp. 229-234. DOI: 10.1016/j.materresbull.2015.12.023.
  4. Kuklo, L.I., Belyaninova, S.I., Ermakov, S.S., Tolstoy, V.P. Fe0.5MnOx · nH2O nanolayers synthesized via successive ionic layer deposition and their use in voltammetric nonenzymatic determination of hydrogen peroxide (2016). Nanotechnologies in Russia, 11 (3-4), pp. 137-143. DOI: 10.1134/S1995078016020105
  5. Kuklo, L.I., Tolstoy, V.P. Redox reactions involving Ce3+ cations and FeO42- anions and the synthesis of Ce1.1FeOx·nH2O nanolayers by the SILD method (2016) Russian Journal of General Chemistry, 86 (1), pp. 1-4. DOI: 10.1134/S1070363216010011.
  6. Ermakov, S.S., Nikolaev, K.G., Tolstoy, V.P. Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential (2016) Russian Chemical Reviews, 85 (8), pp. 880-900. DOI: 10.1070/RCR4605.
  7. Gulina, L.B., Schäfer, M., Privalov, A.F., Tolstoy, V.P., Murin, I.V., Vogel, M. Synthesis and NMR investigation of 2D nanocrystals of the LaF3doped by SrF2 (2016) Journal of Fluorine Chemistry, 188, pp. 185-190. DOI: 10.1016/j.jfluchem.2016.07.006.
  8. Gulina, L.B., Pchelkina, A.A., Nikolaev, K.G., Navolotskaya, D.V., Ermakov, S.S., Tolstoy, V.P. A brief review on immobilization of gold nanoparticles on inorganic surfaces and Successive Ionic Layer Deposition (2016) Reviews on Advanced Materials Science, 44 (1), pp. 46-53.

Гранты

  1. грант РНФ № 18-19-00370 “Разработка основ нанотехнологии послойного синтеза соединений из ряда M_1M_2A_x (M_1, M_2 = Ni, Co, Fe, Mn, Sn, Ir и др., A = O, OH и др.) и их композитов с металлами платиновой группы и/или углеродными наноматериалами и создание новых электродных материалов для альтернативной энергетики” (руководитель проф., д.х.н. В.П. Толстой).
  2. грант РНФ № 19-13-13018 “ Кристаллизация на границе раздела раствор соли металла–газообразный реагент и получение нового поколения наноструктурированных неорганических материалов” (руководитель с.н.с., к.х.н. Л.Б. Гулина).
  3. грант РНФ № 19-73-00304 “Разработка новых маршрутов послойного синтеза гидратированных оксидов M_xA_yBO_z и их нанокомпозитов с графеном” (руководитель н.с., к.х.н. А.А. Лобинский).
  4. грант президента для молодых ученых № МК-2860.2019.3 “Создание новых высокоэффективных электродных материалов для гибридных батарей-суперконденсаторов..” (руководитель н.с., к.х.н. А.А. Лобинский).
  5. грант РФФИ — аспиранты № 20-33-90228 «Изучение закономерностей послойного синтеза наноразмерных частиц родия и рутения, их сплавов и нанокомпозитов с оксидами ряда переходных металлов с общими формулами M_1^0, М_1-xM_2 и M_1O_x-nM_2O_y (M_1= Rh, Ru, M_2 = Co, Ni, Cu и др.) и создание новых практически важных функциональных наноматериалов (руководитель проф., д.х.н. В.П. Толстой).
  6. грант комитета по науке и высшей школе Санкт-Петербурга Правительства Санкт-Петербурга, cоглашение № 125-20 от 21.12.2020 «Разработка методик послойного синтеза нанослоёв оксигидроксида железа и цинка и изучение их бактерицидных свойств» (руководитель проекта к.т.н. А.А. Мелешко).
  7. грант РНФ № 18-19-00370П (продление на период 2021–2022 гг.) «Разработка основ нано­тех­но­логии послойного синтеза соединений из ряда M_1M_2A_x (M_1, M_2 = Ni, Co, Fe, Mn, Sn, Ir и др., A = O, OH и др.) и их композитов с металлами платиновой группы и/или углеродными наноматериалами и создание новых электродных материалов для альтернативной энергетики» (руководитель проф., д.х.н. В.П. Толстой).
  8. грант РНФ № 22-29-00687 «Оптимизация процесса получения функционально-градиентных и тубулярных неорганических микроструктур в результате химических реакций на границе раздела жидкость–газ» (руководитель с.н.с., к.х.н. Л.Б. Гулина).
  9. грант СПбГУ-Технологический университет имени Шарифа (Иран) Pure ID:93573974 «Создание новых 2D-наноматериалов для систем электрохимического сохранения и преобразовании энергии с использованием методологии послойной химической сборки в растворах реагентов» (руководитель проф., д.х.н. В.П. Толстой).

Темы ВКР

Темы возможных ВКР для бакалавров, магистрантов и аспирантов

  1. Полиионная химическая сборка наноразмерных катализаторов для водородной энергетики.
  2. Программируемый послойный синтез наноразмерных частиц благородных металлов и их применение в качестве катализаторов топливных ячеек.
  3. Мультислои оксигидроксидов переходных металлов с графено-подобной морфологией и их массивы как основа для создания новых функциональных наноматериалов.
  4. Программируемый послойный синтез оксигидроксидов переходных металлов и их применение в составе высокоэффективных электродов гибридных батарей-суперконденсаторов.
  5. Новые способы синтеза Янус-наночастиц и создание наномашин на их основе.
  6. Микро- и нанокапсулы со стенками из неорганических соединений и новые функциональные наноматериалы на их основе.
  7. Новые бактерицидные покрытия с улучшенными свойствами на основе сложных оксидов меди, цинка, серебра, железа и др., синтезируемые методом ионного наслаивания.
  8. Послойные синтез биологически активных соединений и создание новых 3D-каркасов с целью восстановления утраченной или повреждённой костной ткани.
Синтез оксидов переходных металлов с морфологией микрокапсул и создание новых электродных материалов