Дополнительные образовательные программы СПбГУ для школьников

Печать
Просмотров: 18731

Научная группа доцента М.Ю. Скрипкина

Обновлено

Научная группа кафедры общей и неорганической химии

Неорганическая химия растворов электролитов

Состав научной группы

Скрипкин Михаил Юрьевич, к.х.н., доцент

m.skripkin@spbu.ru

Руководитель научной группы
ORCID: 0000-0001-9841-150X

Богачёв Никита Александрович, к.х.н., ассистент

n.bogachev@spbu.ru

ORCID: 0000-0002-9495-0669

Пестова Ольга Николаевна, к.х.н., доцент

o.pestova@spbu.ru

ORCID: 0000-0001-7368-3410

Хрипун Василий Дмитриевич, к.х.н., доцент

v.khripun@spbu.ru

ORCID: 0000-0003-0833-3048

Сотрудничающие научные группы и партнёры

  • группа доцента В.В. Сизова (кафедра физической химии) — молекулярно-динамическое моделирование строения растворов электролитов; квантовохимическое описание комплексных соединений в растворах;
  • группа доцента А.С. Мерещенко (каф. лазерной химии и лазерного материаловедения) — фотохимия и фотофизика растворов солей переходных металлов;
  • группа доцента В.А. Кочемировского (каф. лазерной химии и лазерного материаловедения) — оптимизация составов растворов для лазерно-индуцированного осаждения металлических структур с заданными свойствами
  • INE KIT (Institute of Nuclear Waste Disposal, Karlsruhe Institute of Technology) — комплексообразование ионов лантаноидов и актиноидов в растворах;
  • University of Tehran — синтез и характеризация металл-органичсеских каркасных структур (MOFs);
  • Institute of Chemical Pharmaceutic, Hungarian Academy of Sciences — колебательная спектроскопия растворов и кристаллосольватов;
  • University of Enchelada (Мексика) — синтез наноструктур из растворов и их характеризация.

Проекты и текущие исследования

Направленный жидкофазный синтез новых металл-органических каркасных структур и исследование средств управления этим синтезом

Руководитель работы — к.х.н., доцент Скрипкин Михаил Юрьевич

Синтез и изучение свойств металл-органических каркасных структур является одной из наиболее быстро развивающихся областей современной координационной химии. Установлено, что на синтез металл-органических каркасных структур влияют многочисленные факторы, такие, как природа органических линкеров, координационная способность металлоцентров, значение рН, длительность процесса, температура, растворитель и соотношение реагентов. Разработан целый ряд методов синтеза этих веществ, такие, как метод медленного испарения, сольвотермальный, микроволновый, механохимический и так далее. Проиллюстрирован исключительно широкий диапазон применения этих структур — в качестве материалов для хранения и разделения газов (в т. ч., углеводородов), каталитических систем для тонкого органического синтеза и синтеза биологически активных веществ, люминесцентных материалов. Однако столь важный аспект, как выбор соответствующего растворителя для проведения синтеза, остается не до конца выясненным.

Цель данного проекта — раскрыть эффект растворителя на формирование металл-органических каркасных структур в ходе гидро/сольвотермального синтеза и его влияние на свойства образующихся соединений.


Исследование формирования смешанных сольватов солей переходных металлов в тройных системах, содержащих смешанный растворитель или несколько солей

Руководитель работы — к.х.н., ассистент Богачёв Никита Александрович

Проект направлен на решение проблемы взаимосвязи между свойствами компонентов многокомпонентных растворов, на примере трехкомпонентных систем с конкурирующей сольватацией, и строением кристаллизующихся из них твердых фаз. Основная фундаментальная задача проекта — раскрыть влияние свойств и взаимодействий компонентов на формирование твердой фазы (сольватов) в трехкомпонентных системах, содержащих несколько растворителей, или несколько солей. Данное исследование находится на стыке нескольких актуальных и важных направлений теоретической и прикладной химии.

Цель данного проекта — раскрыть связь между составом трехкомпонентной смеси и свойствами её компонентов и составом и строением смешанно-лигандных и индивидуальных сольватов, кристаллизующихся их таких систем.


Исследование строения, микро- и макросвойств многокомпонентных водно-солевых систем

Руководитель работы — к.х.н., доцент Пестова Ольга Николаевна

Растворы электролитов — сложные системы, в которых в условиях динамического равновесия может находиться множество частиц. Изучение состояния ионов в растворах, а также их ближнего окружения в случае образования сольво- и ацидокомплексов, позволяет совершенствовать модельные представления о строении растворов, что в свою очередь способствует нахождению закономерностей влияния микроструктуры растворов на макросвойства таких систем. Исследования строения структурных зон в растворах, а также зависимость их строения от концентрации растворённого вещества имеет большое значение для разработки методов извлечения компонентов из рассолов, которые применяются в химической технологии производства солей.

Цель данного проекта — на специально подобранных модельных системах исследовать закономерности формирования структуры растворов в зависимости от природы ионов электролитов и концентрации веществ с позиции феноменологической модели строения водных растворов электролитов.

Публикации

2020

  1. Khvorost, T. A., Beliaev, L. Y., Potalueva, E., Laptenkova, A. V., Selyutin, A. A., Bogachev, N. A., Skripkin, M. Y., Ryazantsev, M. N., Tkachenko, N., Mereshchenko, A. S., 2020, Journal of Physical Chemistry B. 124, 18, p. 3724–3733
  2. Ivanov, M., Sizov, V., Kudrev, A., 2020, Journal of Molecular Structure. 1202, 127365.

2019

  1. Bogachev, N. A., Gorbunov, A. O., Skripkin, M. Y., Nikol’skii, A. B., 2019, Russian Journal of General Chemistry. 89, 6, p. 1142–1153
  2. Skripkin, M. Y., Chernykh, L. V., Pestova, O. N., Baranauskaite, V. E., Burkov, K. A., Zamyatin, I. V., Stepakova, L. V., Gusev, I. M., Gorbunov, A. O., Bogachev, N. A., Starova, G. L., 2019, Russian Journal of General Chemistry. 89, 6, p. 1085–1101
  3. Bogachev, N. A., Tsyrul’nikov, N. A., Makarova, A. A., Tolmachev, M. V., Starova, G. L., Skripkin, M. Y., Nikol’skii, A. B., 2019, Russian Journal of General Chemistry. 89, 5, p. 859–864
  4. Krapivin, M. A., Ivanov, N. S., Kondratiev, Y. V., Pestova, O. N., Khripun, V. D., 2019,: Russian Journal of General Chemistry. 89, 4, p. 856–858
  5. Kudrev, A. G., 2019, Russian Journal of General Chemistry. 89, 6, p. 1115–1128
  6. Baranauskaite, V., Pestova, O., Vovk, M., Matveev, V., Lähderanta, E., 2019, Physical Chemistry Chemical Physics. 21, 41, p. 22895–22901

2018

  1. Stepashkin N.A., Chernenko M.K., Khripun V.D., Ivanov N.S., Sukhodolov N.G. 2018, Thin Solid Films., 661, p. 1–6
  2. N.A. Stepashkin, M.K. Chernenko, V.D. Khripun, N.S. Ivanov, N.G. Sukhodolov 2018, Reviews on Advanced Materials Science. 56, p. 215–223
  3. Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine
  4. Kudrev, A. G., 2018, Russian Journal of General Chemistry. 88, 12, p. 2578–2588
  5. Olshin, P. K., Myasnikova, O. S., Kashina, M. V., Gorbunov, A. O., Bogachev, N. A., Kompanets, V. O., Mereshchenko, A. S. (2018). The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations. Chemical Physics, 503, 14-19. doi: 10.1016/j.chemphys.2018.01.020
  6. Bogachev, N. A., Lyubichev, D. A., Starova, G. L., Nikolskii, A. B., & Skripkin, M. Y. (2018). Solubility of copper(II) chloride in mixed organic oxygen-containing solvents. Russian Journal of General Chemistry, 88(4), 617-621. doi: 10.1134/S1070363218040011
  7. Bogachev, N. A., Starova, G. L., Razzhivin, A. V., Skripkin, M. Y., & Nikolskii, A. B. (2018). Solubility of d-element salts in organic and Aqueous–Organic solvents: VI.1Structure and thermal stability of cadmium iodide and bromide solvates with dimethylacetamide and dimethylformamide. Russian Journal of General Chemistry, 88(1) doi: 10.1134/S1070363218010012
  8. Pestova, O. N., Bukesova, V. A., Kondrat’ev, Y. V., Khripun, V. D., & Baranauskaite, V. E. (2018). Energy characteristics of Lithium–Cesium binary chloride dissolution in water. Russian Journal of General Chemistry, 88(3), 596-597. doi: 10.1134/S1070363218030325
  9. Kondrat’ev, Y. V., Butlak, A. V., Kazakov, I. V., Krasnova, I. S., Chislov, M. V., & Timoshkin, A. Y. (2018). Heat effects of the thermal decomposition of amidoboranes of potassium, calcium, and strontium. Russian Journal of Physical Chemistry A, 92(4), 640-645. doi: 10.1134/S0036024418040143
  10. Stepashkin, N. A., Chernenko, M. K., Khripun, V. D., Ivanov, N. S., & Sukhodolov, N. G. (2018). Electrochemical properties of langmuir-blodgett films containing cobalt hexacyanoferrate nanoparticles. Thin Solid Films, 661, 1-6. doi: 10.1016/j.tsf.2018.06.052

2017

  1. Bogachev, N. A., Tsyrulnikov, N. A., Starova, G. L., Skripkin, M. Y., & Nikolskii, A. B. (2017). Solubility of salts of d-elements in organic and water-organic solvents: V. inner-sphere chalcogen S–S contacts in the [Ni(DMSO)4(H2O)2]Cl2 solvate. Russian Journal of General Chemistry, 87(11), 2748-2749. doi: 10.1134/S1070363217110378
  2. Gorbunov, A. O., Lindqvist-Reis, P., Mereshchenko, A. S., & Skripkin, M. Y. (2017). Solvation and complexation of europium(III) ions in triflate and chloride aqueous-organic solutions by TRLF spectroscopy. Journal of Molecular Liquids, 240, 25-34. doi: 10.1016/j.molliq.2017.04.136
  3. Mereshchenko, A. S., Myasnikova, O. S., Panov, M. S., Kochemirovsky, V. A., Skripkin, M. Y., Budkina, D. S., & Tarnovsky, A. N. (2017). Solvent effects on nonradiative relaxation dynamics of low-energy ligand-field excited states: A CuCl42- complex. Journal of Physical Chemistry B, 121(17), 4562-4568. doi: 10.1021/acs.jpcb.7b02015
  4. Pestova, O. N., Efimov, A. Y., Myund, L. A., Kudrev, A. G., Khripun, V. D., Davidian, A. G., & Baranauskaite, V. E. (2017). Structural inhomogeneity in electrolyte solutions: The calcium Perchlorate–Water system. Journal of Solution Chemistry, 46(9-10), 1854-1870. doi: 10.1007/s10953-017-0662-3
  5. Kudrev, A. G. (2017). Spectrophotometric study of melting of double stranded poly[A]·Poly[U] in the aqueous solution. Russian Journal of General Chemistry, 87(4), 788-794. doi: 10.1134/S107036321704020X
  6. Ovsepyan, G. K., Kudrev, A. G., Shumilova, G. I., Starikova, A. A., Semeikin, A. S., & Pendin, A. A. (2017). Protolytic properties of water-soluble magnesium 5,10,15,20-tetra(1-methylpyridin-1-ium-4-yl)porphyrinate tetraperchlorate MgTMPyP4. Russian Journal of General Chemistry, 87(12), 2906-2908. doi: 10.1134/S1070363217120295
  7. Kudrev, A. G. (2017). The evidence of cooperative binding of a ligand to G4 DNA. Journal of Analytical Methods in Chemistry, 2017 doi: 10.1155/2017/6780521
  8. Panov, M. S., Vereshchagina, O. A., Ermakov, S. S., Tumkin, I. I., Khairullina, E. M., Skripkin, M. Y., Kochemirovsky, V. A. (2017). Non-enzymatic sensors based on in situ laser-induced synthesis of copper-gold and gold nano-sized microstructures. Talanta, 167, 201-207. doi: 10.1016/j.talanta.2017.01.089

2016

  1. Efimov, A. Y., Khripun, M. K., Myund, L. A., & Pestova, O. N. (2016). Mobile nanostructures (cybotactic groups) as a basis of generalised phenomenological model of aqueous electrolyte solutions. International Journal of Nanotechnology, 13(1-3), 95-111. doi: 10.1504/IJNT.2016.074526
  2. Pestova, O. N., Baranauskaite, V. E., & Khripun, M. K. (2016). Formation of binary salts in the system LiCl–CsCl–H2O. Russian Journal of General Chemistry, 86(4), 767-770. doi: 10.1134/S1070363216040010
  3. Khripun, V. D., Krapivin, M. A., Tsyleva, K. S., Sukhodolov, N. G., & Kondrat'Ev, Y. V. (2016). State of molybdenum clusters in solutions: III. formation enthalpies of intermediate products of stepwise K2[Mo2(SO4)4] oxidation in 1 M H2SO4 solution. Russian Journal of General Chemistry, 86(1), 5-8. doi: 10.1134/S1070363216010023
  4. Tolstykh, G., Sizov, V., & Kudrev, A. (2016). Surface complex of ZnTMPyP4 metalloporphyrin with double-stranded poly(A)-poly(U). Journal of Inorganic Biochemistry, 161, 83-90. doi: 10.1016/j.jinorgbio.2016.05.004
  5. Kudrev, A. G. (2016). Model of cooperative interaction of TMPyP4 porphyrine with DNA quadruplex. Russian Journal of General Chemistry, 86(6), 1353-1363. doi: 10.1134/S1070363216060219
  6. Mereshchenko, A. S., Olshin, P. K., Myasnikova, O. S., Panov, M. S., Kochemirovsky, V. A., Skripkin, M. Y., Tarnovsky, A. N. (2016). Ultrafast photochemistry of copper(II) monochlorocomplexes in methanol and acetonitrile by broadband deep-UV-to-near-IR femtosecond transient absorption spectroscopy. Journal of Physical Chemistry A, 120(11), 1833-1844. doi: 10.1021/acs.jpca.5b12509
  7. Bogachev, N. A., Tsyrulnikov, N. A., Gorbunov, A. O., Nikolskii, A. B., Skripkin, M. Y., & Burkov, K. A. (2016). Solubility of d-elements salts in organic and aqueous-organic solvents: IV. solubility of cadmium chloride. Russian Journal of General Chemistry, 86(11), 2405-2409. doi: 10.1134/S1070363216110013
  8. Gorbunov, A. O., Tsyrul’nikov, N. A., Tikhomirova, A. A., Bogachev, N. A., Skripkin, M. Y., Nikolskii, A. B., & Pestova, O. N. (2016). Solubility of d-element salts in organic and aqueous–organic solvents: II. effect of halocomplex formation on solubility of cobalt bromide and chloride and nickel chloride. Russian Journal of General Chemistry, 86(4), 771-777. doi: 10.1134/S1070363216040022
  9. Bogachev, N. A., Gorbunov, A. O., Nikolskii, A. B., & Skripkin, M. Y. (2016). Solubility of d-elements salts in organic and aqueous-organic solvents: III. influence of intermolecular association on solubility of cadmium bromide and iodide. Russian Journal of General Chemistry, 86(7), 1539-1544. doi: 10.1134/S107036321607001X

2015

  1. Bogachev, N. A., Gorbunov, A. O., Tikhomirova, A. A., Pushikhina, O. S., Skripkin, M. Y., & Nikolskii, A. B. (2015). Solubility of d-elements salts in organic and aqueous-organic solvents: I. copper, cobalt, and cadmium sulfates. Russian Journal of General Chemistry, 85(11), 2509-2512. doi: 10.1134/S107036321511002X
  2. Kochemirovsky, V. A., Skripkin, M. Y., Tveryanovich, Y. S., Mereshchenko, A. S., Gorbunov, A. O., Panov, M. S., Safonov, S. V. (2015). Laser-induced copper deposition from aqueous and aqueous–organic solutions: State of the art and prospects of research. Russian Chemical Reviews, 84(10), 1059-1075. doi: 10.1070/RCR4535
  3. Tolstykh, G., & Kudrev, A. (2015). Mutual influence between contiguous TMPyP4 ligands when bound to a synthetic double-stranded poly(A)-poly(U). Journal of Molecular Structure, 1098, 342-350. doi: 10.1016/j.molstruc.2015.06.031
  4. Khripun, V. D., Krapivin, M. A., Tsyleva, K. S., Sukhodolov, N. G., & Kondrat'Ev, Y. V. (2015). State of molybdenum clusters in solutions: II. thermodynamics of formation of dimolybdenum(II) tetrakis(trifluoroacetate) complexes with hexamethylphosphotriamide in 1,2-dichloroethane. Russian Journal of General Chemistry, 85(10), 2227-2232. doi: 10.1134/S1070363215100023
  5. Mereshchenko, A. S., Olshin, P. K., Karabaeva, K. E., Panov, M. S., Wilson, R. M., Kochemirovsky, V. A., Tarnovsky, A. N. (2015). Mechanism of formation of copper(II) chloro complexes revealed by transient absorption spectroscopy and DFT/TDDFT calculations. Journal of Physical Chemistry B, 119(28), 8754-8763. doi: 10.1021/acs.jpcb.5b03889

2014

  1. Kinzhalov, M. A., Borozdinova, A. M., Boyarskaya, I. A., Skripkin, M. Y., & Boyarskii, V. P. (2014). Reversible chelating in acyclic diaminocarbene palladium complex containing hydrazide fragment. Russian Journal of General Chemistry, 84(11), 2138-2141. doi: 10.1134/S1070363214110164
  2. Mereshchenko, A. S., Olshin, P. K., Karimov, A. M., Skripkin, M. Y., Burkov, K. A., Tveryanovich, Y. S., & Tarnovsky, A. N. (2014). Photochemistry of copper(II) chlorocomplexes in acetonitrile: Trapping the ligand-to-metal charge transfer excited staterelaxations pathways. Chemical Physics Letters, 615(1), 105-110. doi: 10.1016/j.cplett.2014.10.016
  3. Pestova, O. N., David'yan, A. G., Myund, L. A., Khripun, M. K., & Efimov, A. Y. (2014). Solubility polytherms and eutectic concentrations of scandium, yttrium, and lanthanum perchlorate solutions. Russian Journal of General Chemistry, 84(10), 1899-1903. doi: 10.1134/S1070363214100053
  4. Davidian, A. G., Kudrev, A. G., Myund, L. A., Khlynova, O. S., & Khripun, M. K. (2014). Structure of aqueous electrolyte solutions estimated by near infrared spectroscopy and chemometric analysis of spectral data. Russian Journal of General Chemistry, 84(10), 1877-1887. doi: 10.1134/S1070363214100028
  5. Davidian, A. G., Kudrev, A. G., Myund, L. A., & Khripun, M. K. (2014). Detection of hydrate forms of lithium and sodium perchlorates in aqueous solutions using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 22(2), 121-128. doi: 10.1255/jnirs.1107
  6. Davidian, A. G., Kudrev, A. G., Myund, L. A., & Khripun, M. K. (2014). Near infrared spectral studies of aqueous solutions of metal perchlorates in groups I A, II A, II B, III A and III B of the periodic table. Journal of Near Infrared Spectroscopy, 22(1), 27-34. doi: 10.1255/jnirs.1090
  7. Kudrev, A. G. (2014). Calculation of equilibrium formation constants of complexes with a polydentate oligomer. Russian Journal of General Chemistry, 84(3), 424-432. doi: 10.1134/S1070363214030037
  8. Khripun, V. D., Krapivin, M. A., Sukhodolov, A. O., & Kondrat'ev, Y. V. (2014). State of molybdenum clusters in solutions: I. stability of the [Mo2(SO4)4]4- ion in H2SO4 solutions. Russian Journal of General Chemistry, 84(12), 2393-2396. doi: 10.1134/S1070363214120068
  9. Ivanov, N. S., Khripun, V. D., Trofimov, M. A., Sukhodolov, N. G., & Pendin, A. A. (2014). Synthesis of nanodimensional films based on hybrid materials and their application in the ion-selective electrodes. Reviews on Advanced Materials Science, 39(1), 34-40. Retrieved from www.scopus.com

2013

  1. Kudrev, A. G. (2013). Calculation of cooperativity and equilibrium constants of ligands binding to G-quadruplex DNA in solution. Talanta, 116, 541-547. doi: 10.1016/j.talanta.2013.07.012
  2. Kudrev, A. G. (2013). Cooperative binding of 2,2′-bipyridine into polynucleotide poly(A)-poly(U-) in an alkaline aqueous solution. Biopolymers, 99(9), 621-627. doi: 10.1002/bip.22227
  3. Kudrev, A. G. (2013). Cooperativity during binding of a ligand to a multidentate oligomer. Polymer Science - Series A, 55(10), 586-594. doi: 10.1134/S0965545X13090022
  4. David'Yan, A. G., Kudrev, A. G., Myund, L. A., & Khripun, M. K. (2013). Structure of aqueous solutions of group IIIA metals perchlorates by near infrared spectroscopy. Russian Journal of General Chemistry, 83(3), 415-422. doi: 10.1134/S107036321303002X
  5. Lindqvist-Reis, P., Apostolidis, C., Walter, O., Marsac, R., Banik, N. L., Skripkin, M. Y., Morgenstern, A. (2013). Structure and spectroscopy of hydrated neptunyl(vi) nitrate complexes. Dalton Transactions, 42(43), 15275-15279. doi: 10.1039/c3dt51650d
  6. Geranmayeh, S., Abbasi, A., Zarnani, A. -., & Skripkin, M. Y. (2013). A novel trinuclear zinc metal-organic network: Synthesis, X-ray diffraction structures, spectroscopic and biocompatibility studies. Polyhedron, 61, 6-14. doi: 10.1016/j.poly.2013.05.030

2012

  1. Gorbunov, A. O., Spektor, K. K., Skripkin, M. Y., & Tsyrulnikov, N. A. (2012). Solution-solid phase equilibrium in the systems copper(ii) halide-aprotic organic solvent-water. Russian Journal of General Chemistry, 82(6), 1053-1057. doi: 10.1134/S1070363212060023
  2. Abbasi, A., Geranmayeh, S., Skripkin, M. Y., & Eriksson, L. (2012). Potassium ion-mediated non-covalent bonded coordination polymers. Dalton Transactions, 41(3), 850-859. doi: 10.1039/c1dt11698c
  3. Geranmayeh, S., Abbasi, A., Skripkin, M. Y., & Badiei, A. (2012). A novel 2D zinc metal-organic framework: Synthesis, structural characterization and vibrational spectroscopic studies. Polyhedron, 45(1), 204-212. doi: 10.1016/j.poly.2012.07.013
  4. Davidian, A. G., Pestova, O. N., Starova, G. L., Gurzhii, V. V., Myund, L. A., & Khripun, M. K. (2012). X-ray diffraction study of isomorphous crystal nonahydrates of aluminum, gallium, and scandium perchlorates. Russian Journal of General Chemistry, 82(4), 621-625. doi: 10.1134/S1070363212040019
  5. Kudrev, A. G. (2012). [Model of cytosine-, thymine-containing olygodeoxyribonucleotide protonation in solution]. Biofizika, 57(3), 422-431. Retrieved from www.scopus.com
  6. Timoshkin, A. Y., & Kudrev, A. G. (2012). Calculations of microconstants and equilibrium formation constants for platinum(II) and palladium(II) halide complexes in solution. Russian Journal of Inorganic Chemistry, 57(10), 1362-1370. doi: 10.1134/S0036023612100142
  7. Kudrev, A. G. (2012). Model of cytosine-, thymine-containing oligodeoxyribonucleotide protonation in solution. Biophysics (Russian Federation), 57(3), 305-313. doi: 10.1134/S0006350912030104
  8. Kudrev, A. G. (2012). Calculation of equilibrium binding constants and cooperativity of cu(II) mixed solvated complexes formation. Talanta, 101, 157-160. doi: 10.1016/j.talanta.2012.09.014

2011

  1. Abbasi, A., Skripkin, M. Y., Eriksson, L., & Torapava, N. (2011). Ambidentate coordination of dimethyl sulfoxide in rhodium(iii) complexes. Dalton Transactions, 40(5), 1111-1118. doi: 10.1039/c0dt01026j
  2. Gusev, I. M., & Skripkin, M. Y. (2011). Formation of complex and double salts in systems MX2-NR4X-H2O [M = cd(II), cu(II), co(II), mg(II); X = cl, br; R = me, et, bu] at 25 °C. Russian Journal of Applied Chemistry, 84(1), 25-35. doi: 10.1134/S1070427211010046
  3. Grigor'ev, Y. M., Gusev, I. M., & Skripkin, M. Y. (2011). Structure of NR4BR-H2O and CoBr2-NR4BR-H2O solutions according to electronic and IR spectroscopy data. Russian Journal of General Chemistry, 81(7), 1424-1429. doi: 10.1134/S1070363211070048
  4. Gusev, I. M., Skripkin, M. Y., Spektor, K. K., & Starova, G. L. (2011). Solution-solid phase equilibrium in the systems MgBr2-NR4Br-H2O at 25 °C (R = me, et, bu). Russian Journal of General Chemistry, 81(4), 623-627. doi: 10.1134/S1070363211040013
  5. Tyutyunnik, A. P., Zubkov, V. G., Krasil'Nikov, V. N., Berger, I. F., Perelyaeva, L. A., Baklanova, I. V., Svensson, G. (2011). Crystal structure and vibrational spectra of M[VO2(SeO4)(H2O)2]·H2O (M = K, rb, NH4). Journal of Structural Chemistry, 52(2), 350-357. doi: 10.1134/S0022476611020156
  6. Pestova, O. N., David'Yan, A. G., Myund, L. A., & Khripun, M. K. (2011). Solubility of aluminum, gallium, and indium perchlorates in water. Russian Journal of General Chemistry, 81(8), 1583-1587. doi: 10.1134/S1070363211080020
  7. Kudrev, A. G. (2011). Calculation of equilibrium constants of ligand binding by a metal ion in solution using a chemometric procedure. Russian Journal of General Chemistry, 81(3), 456-462. doi: 10.1134/S1070363211030029

2010

  1. Gusev, I. M., Skripkin, M. Y., & Burkov, K. A. (2010). Solution-solid phase equilibrium in the systems MBr2-NR4Br-H2O (M = cd, cu, co; R = me, et, bu) at 25°C. Russian Journal of General Chemistry, 80(8), 1563-1567. doi: 10.1134/S1070363210080049
  2. Gusev, I. M., Skripkin, M. Y., & Burkov, K. A. (2010). Anion influence on the solution-solid phase equilibria in the MX2-NEt4X-H2O systems (M = cd, cu, co; X = cl, br) at 25°C. Russian Journal of General Chemistry, 80(9), 1729-1732. doi: 10.1134/S107036321009001X
  3. Bucek, P., Gargallo, R., & Kudrev, A. (2010). Spectrometric study of the folding process of i-motif-forming DNA sequences upstream of the c-kit transcription initiation site. Analytica Chimica Acta, 683(1), 69-77. doi: 10.1016/j.aca.2010.10.008
  4. Gargallo, R., Eritja, R., & Kudrev, A. G. (2010). Spectrometric study of the oligodeoxyribonucleotide protonation in aqueous solution. Russian Journal of General Chemistry, 80(3), 485-492. doi: 10.1134/S1070363210030205
  5. Kudrev, A. G. (2010). Calculation of the equilibrium constants and cooperative parameters of formation of cu(II) chloride complexes in nonaqueous solvents. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 36(9), 704-710. doi: 10.1134/S1070328410090113
  6. Kudrev, A. G. (2010). Alternative complex formation model based of spectrophotometry data for the cu(II)-bromide ion system in solution. Russian Journal of Inorganic Chemistry, 55(5), 814-819. doi: 10.1134/S0036023610050268
  7. Starova, G. L., Skripkin, M. Y., & Gusev, I. M. (2010). Structure of complex bromides crystallizing in MBr2-NEt4Br-H2O systems (M = cd, cu, co) at 25°C. Russian Journal of General Chemistry, 80(7), 1236-1241. doi: 10.1134/S1070363210070030
  8. Mink, J., Hajba, L., Pápai, I., Mihály, J., Neméth, C., Skripkin, M. Y., & Sandström, M. (2010). Vibrational spectroscopic and theoretical studies of urea derivatives with biochemical interest: N,N'-dimethylurea, N,N,N',N'-tetramethylurea, and N,N'-dimethylpropyleneurea. Applied Spectroscopy Reviews, 45(4), 274-326. doi: 10.1080/05704928.2010.483670
  9. Mink, J., Hajba, L., Pápai, I., Mihály, J., Neméth, C., Skripkin, M. Y., & Sandström, M. (2010). Raman, infrared, far-infrared and theoretical studies of urea derivatives with biological interest. Paper presented at the AIP Conference Proceedings, 1267 605-606. doi: 10.1063/1.3482702 Retrieved from www.scopus.com

2009

  1. Gusev, I. M., & Skripkin, M. Y. (2009). Comparative analysis of the solubility in the systems CuBr 2-NR4Br-H2O at 25°C. Russian Journal of Applied Chemistry, 82(2), 222-227. doi: 10.1134/S1070427209020116
  2. Risberg, E. D., Mink, J., Abbasi, A., Skripkin, M. Y., Hajba, L., Lindqvist-Reis, P., Sandström, M. (2009). Ambidentate coordination in hydrogen bonded dimethyl sulfoxide, (CH3)2SO⋯H3O+, and in dichlorobis(dimethyl sulfoxide) palladium(ii) and platinum(ii) solid solvates, by vibrational and sulfur K-edge X-ray absorption spectroscopy. Dalton Transactions, (8), 1328-1338. doi: 10.1039/b814252a
  3. Stepakova, L. V., Skripkin, M. Y., Korneeva, V. V., Grigoriev, Y. M., & Burkov, K. A. (2009). Organic solvent effect on the solution-solid phase equilibria in the systems CuCl2-L-H2O (L = DMSO, DMF, acetonitrile) at 25°C. Russian Journal of General Chemistry, 79(6), 1053-1056. doi: 10.1134/S1070363209060012
  4. Kudrev, A. G. (2009). Calculation of the equilibrium constants and binding cooperativity parameters of ammonia with group II metal cations in solution. Russian Journal of General Chemistry, 79(10), 2087-2095. doi: 10.1134/S1070363209100028