ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

ЯМР

Магнитные свойства ядер

М – масса ядра – нечётная	М – масса ядра – чётная			
n – нечётное p – чётное или n – чётное p – нечётное Нечётно-чётные	n – нечётное p – нечётное Нечётно-нечётные ядра	n – чётное p – чётное Чётно-чётные ядра		
ядра спин ядра I = 1/2, 3/2, 5/2, (полуцелое)	спин ядра <i>I</i> = 1, 2, 3, (целое)	спин ядра <i>I</i> = 0		

$I = 1/2 : {}^{1}H, {}^{13}C,$ ${}^{15}N, {}^{19}F, {}^{29}Si, {}^{31}P$	$I = 1 : {}^{2}H (D), {}^{14}N$	¹² C, ¹⁶ O, ³² S
$I = 3/2 : {}^{11}B$	$I = 3 : {}^{10}B$	
I = 5/2 : ¹⁷ 0 <u>Возможно наблюде</u>	<u>Невозможно</u> <u>наблюдение</u> явления ЯМР.	

Явление ЯМР можно наблюдать только для ядер с ненулевым спиновым квантовым числом *I* ≠ 0.

Ядра с $I \neq 0$ имеют магнитное квантовое число $m_i = I, I-1, I-2, ...-I$ (значения от I до -I через 1).

Ядро атома водорода ¹Н (протон): I = 1/2 и $m_i = 1/2, -1/2.$

Ядро дейтерия ²H (D): I = 1 и $m_i = 1, 0, -1$.

Ядра атомов имеют собственный момент импульса *p*:

$$p=\sqrt{I(I+1)} imesrac{h}{2\pi}$$
 I-спин ядра $h-$ постоянная Планка

Магнитные ядра ($I \neq 0$) характеризуются магнитным моментом μ :

 $\mu = \gamma \times p$ γ – гиромагнитное отношение – индивидуальная характеристика ядра

m_i – это проекция вектора μ на линии напряженности магнитного поля.

Магнитное ядро со спином *I*, имеющее магнитный момент μ.

Ядро в магнитном поле. Явление ЯМР

Атомное ядро со спином I = 1/2 и $m_i = +1/2$ (α), -1/2 (β) (например, протон - ядро атома водорода ¹Н).

Энергия ядра в магнитном поле:

$$E = -\frac{mh}{2\pi}\gamma B_0$$

*B*₀ – напряженность магнитного поля

для
$$m_1 = +1/2$$
 $E_1 = -\frac{h}{4\pi}\gamma B_0$

для
$$m_2 = -1/2$$
 $E_2 = \frac{h}{4\pi} \gamma B_0$

$$\Delta E = E_2 - E_1 = \frac{h}{2\pi} \gamma B_0$$

Основное уравнение ЯМР

$$\Delta E = \frac{h}{2\pi} \gamma B_0 \qquad \Delta E = h \nu$$

- **В**₀ напряженность магнитного поля
- **v- резонансная частота**
- h постоянная Планка
- у– гиромагнитное отношение

Для ядер ¹Н: $\gamma = 2.674 \times 10^8 \text{ c}^{-1}\text{Tл}^{-1}$, при В₀ = 1.4 Тл $\nu = 60$ МГц (резонанс).

Разница заселенностей уровней
с
$$m_1 = +1/2$$
 (α) и $m_2 = -1/2$ (β)

По закону температурного распределения Больцмана:

$$\frac{N_{\beta}}{N_{\alpha}} = e^{-\frac{\Delta E N_{aB}}{RT}} = e^{-\frac{h \vee N_{aB}}{RT}} = e^{-\frac{h \gamma B_0 N_{aB}}{2\pi RT}}$$

Для ядер ¹Н при T = 300К (23°С):
$$\frac{N_{\beta}}{N_{\alpha}} = 0.99999$$

 $\gamma = 2.674 \times 10^8 \text{ c}^{-1}\text{Tл}^{-1}, B_0 = 1.4 \text{ Tл}$ $\frac{N_{\beta}}{N_{\alpha}} = 0.999999$

$$\frac{N_{\alpha}}{N_{\beta}} = 1.00001$$
 Из 2 000 010 ядер:
1 000 000 с $m_2 = -1/2$ (β) и
1 000 010 с $m_1 = 1/2$ (α),
т.е. разница заселённости 10⁻³ %.

Релаксация – возвращение системы ядерных спинов

в исходное состояние после резонанса

Механизмы релаксации

- Спин-решёточная релаксация (продольная). Характеризуется временем Т₁. Передача магнитной энергии межмолекулярному окружению. Превращение магнитной энергии в тепловую.
- 2. Спин-спиновая релаксация (поперечная). Характеризуется временем Т₂. Обмен спинами между соседними ядрами.

Принципиальная блок-схема

спектрометра ЯМР

ЯМР с Фурье-преобразованием

Образцы подвергаются действию мощного кратковременного импульса (50 пикосекунд) с широким диапазоном частот. При этом резонируют все ядра образца.

Регистрируют сигнал по всем частотам. После математической операции Фурье-преобразования получают спектр ЯМР.

Химический сдвиг

і - ток электронов, индуцированный полем В₀

> Локальное магнитное поле на ядре: $B_{_{ЛОК.}} = B_0 - \sigma B_0 = B_0(1-\sigma)$

σ – константа

экранирования

ядра электронами.

В₀ - внешнее магнитное поле

магнитное поле $b = \sigma B_0$, индуцированное током *i* Каждое ядро имеет свою константу о

и свою резонансную частоту:

$$v_{\text{peз.}} = \frac{\gamma B_{\text{лок.}}}{2\pi} = \frac{\gamma B_0 (1 - \sigma)}{2\pi}$$

От v_{рез.} перешли к измерению величин, называемых химическими сдвигами б и измеряемых в миллионных долях :

$$\delta = \frac{\nu_{\text{pes. образца}} - \nu_{\text{pes. стандарта}}}{\nu_{\text{pa6. прибора}}} \times 10^6 \, \text{млн. д.}$$

В спектроскопии ЯМР ¹Н и ¹³С в качестве стандартов используют сигналы протонов и ядер углерода, соответственно, молекулы тетраметилсилана Si(CH₃)₄ (TMC) для которого $\delta = 0$ м. д.

$$\begin{array}{c} \mathsf{CH}_3\\ \mathsf{H}_3\mathsf{C}-\mathsf{Si}-\mathsf{CH}_3\\ \mathsf{CH}_3\end{array}$$

тетраметилсилан

 $\delta = 0$ м.д.

Спектроскопия ЯМР на ядрах ¹Н – протонный магнитный резонанс (ПМР)

Шкала химических сдвигов протонов

Примеры спектров ЯМР ¹Н (ПМР) без спин-спинового взаимодействия

Спектр ЯМР ¹Н метилацетата

Ядерный магнитный резонанс

Спектр ЯМР ¹Н 1,4-диоксана

Спектр ЯМР ¹Н бензола

Спектр ЯМР ¹Н мезитилена (1,3,5-триметилбензола)

Ядерный магнитный резонанс

Факторы, влияющие на хим. сдвиг

I. Индуктивный эффект заместителей.

Наличие рядом с протонами электроноакцепторных группировок приводит к разэкранированию этих протонов (оттягиванию электронной плотности от протонов) и сдвигу их сигнала в более слабое поле, в область больших значений б.

Соединение	H–CH ₃	I-CH ₃	Br–CH ₃	HO-CH ₃	F-CH ₃
X–CH ₃	(CH ₄)				
Электро- отрицатель- ность группы Х	2.1	2.5	2.8	3.5	4.0
Хим. сдвиг б (м.д) группы СН ₃	0.2	2.2	2.7	3.4	4.3

Спектр ЯМР ¹Н метилацетата

II. Анизотропный эффект

Эффект кольцевого тока в бензольном ядре.

Спектр ЯМР ¹Н толуола

Ядерный магнитный резонанс

Магнитный анизотропный эффект

двойных связей С=С и С=О

Спектр ЯМР ¹Н циклопентен-2-она

Ядерный магнитный резонанс

Спектр ЯМР ¹Н бензальдегида

Магнитный анизотропный эффект ацетиленовой связи С≡С В₀ Экранирование Н С область С С

Магнитный анизотропный эффект

простой связи С-С

Спин-спиновое взаимодействие между протонами

Ядерный магнитный резонанс

Ядерный магнитный резонанс

Рассмотрим единую спиновую систему ядер фрагмента >CH_A-CH_X< :

Общая формула мультиплетности сигналов в ЯМР:

$$M_A = 2N_X I_X + 1$$

М_А – мультиплетность сигнала ядер данной группы

N_X – количество ядер в соседней группе связанных спин-спиновым взаимодействием с ядрами данной группы

I_X- спин ядер соседней группы

Для протонов $I_X = 1/2$, т.е. :

 $M_A = N_X + 1$

Правило мультиплетности в спектрах ПМР (ЯМР ¹Н):

При наличии спин-спинового взаимодействия мультиплетность сигналов в спектрах ПМР определяется количеством ядер в соседней группе плюс единица.

<u>Относительная интенсивность сигналов</u> внутри мультиплетов. Треугольник Паскаля

Число ядер Х														Сигнал
0							1							синглет
1						1		1						дублет
2					1		2		1					триплет
3				1		3		3		1				квартет
4			1		4		6		4		1			квинтет
5		1		5		10		10		5		1		секстет
6	1		6		15		20		15		6		1	cenmem

Передача спин-спинового взаимодействия

В органических соединениях спин-спиновое взаимодействие передаётся в насыщенных фрагментах по системе простых σ-связей через 3 связи;

в ненасыщенных фрагментах по системе *π*-связей через 4 (иногда 5) связей;

наличие гетероатома (O, N, S) может выключать протоны из спин-спинового взаимодействия.

Основные типы спиновых систем

Фрагмент спектра ЯМР ¹Н соединения

Система АХ₃

Спектр ЯМР ¹Н α-бромпропионовой кислоты

Спектр ЯМР ¹Н хлорэтанола

59

Система А2Х3

Трёхспиновая система АМХ

Если данная группа ядер связана спин-спиновым взаимодействием с несколькими различными группами ядер, то мультиплетность её сигнала определяется как произведение мультиплетностей от каждой соседней группы.

Для трёхспиновой системы AMX:

 $M_M = M_{AM} \times M_{XM} = (N_A + 1) \times (N_X + 1) = (1 + 1) \times (1 + 1) = 4$ дублет дублетов

<u>Фенильное кольцо – С₆Н₅ в спектрах ПМР</u>

<u>Пара-замещённая бензольная система в спектрах ПМР –</u>

два дублета с эффектом "крыши"

Спектр ЯМР ¹Н соединения

Механизм передачи спин-спинового взаимодействия

по системе химических связей

Численные значения констант спин-спинового взаимодействия протонов

1. Геминальные константы ССВ

2. Вицинальные константы ССВ

Константа ³*J* зависит от диэдрального угла ф.

Ядерный магнитный резонанс

Кривая Карплуса-Конроя – зависимость ³*J* от ф

Ядерный магнитный резонанс

Константы ССВ в ароматических системах

Спектроскопия ЯМР на ядрах углерода ¹³С

Ядерный магнитный резонанс

Изотоп углерода ¹²С: I = 0 (ЯМР не наблюдается).

Изотоп углерода ¹³C: I = 1/2; природная распространённость ~1%. Гиромагнитное отношение $\gamma = 6.728 \times 10^7 \text{ c}^{-1} \text{Tл}^{-1}$

Чувствительность в спектроскопии ЯМР ¹³С меньше, чем в спектроскопии ПМР.

Для регистрации спектра ЯМР ¹³С необходимо 20 - 100 мг вещества.

Шкала химических сдвигов в ЯМР ¹³С

В спектроскопии ЯМР ¹³С регистрируют:

1. Спектры с подавлением спин-спинового взаимодействия с протонами. Сигналы в спектре ЯМР ¹³С – синглеты.

 Спектры с сохранением спин-спинового взаимодействия с протонами.
Сигналы в спектре ЯМР ¹³С – мультиплеты.

Спектры ЯМР ¹³С с подавлением спин-спинового взаимодействия с протонами

Спектр ЯМР ¹³С анизола

Спектры ЯМР ¹³С с сохранением (без подавления) спин-спинового взаимодействия с протонами

Константы спин-спинового взаимодействия ядер углерода ¹³С с протонами

1. Прямые константы ССВ ${}^{1}J_{CH}$

2. Константы ${}^{2}J_{CH}$

3. Константы ${}^{3}J_{CH}$

$$^{3}J = 8 - 14 \Gamma \mu$$

H.
C.
C.
C.
S.
p³

H····,
$${}^{3}J = 7 - 9 Гц$$

Мультиплетность сигналов в спектрах ЯМР ¹³С с сохранением ССВ с протонами

Фрагмент спектра ЯМР ¹³С пипероналя

Фрагмент спектра ЯМР ¹³С пипероналя

Метод DEPT-135 DEPT («Distortionless Enhancement by Polarization Transfer») – неискаженное усиление путем переноса поляризации

Специальная последовательность радиочастотных импульсов в ЯМР, приводящая к появлению:

-положительных сигналов ядер атомов ¹³С, имеющих нечетное число протонов, - групп СН и СН₃;

-отрицательных сигналов ядер атомов ¹³С, имеющих четное число протонов, - групп CH₂;

- исчезновению сигналов ядер атомов ¹³С, вообще не имеющих протонов, - четвертичных углеродных атомов.

Спектр ЯМР ¹³С соединения (CDCl₃, 100 МГц)

Ядерный магнитный резонанс

Спектроскопия ЯМР ¹⁹F

Ядро атома фтора ¹⁹F: спин I = 1/2; гиромагнитное отношение $\gamma = 2.517 \times 10^8 \text{ c}^{-1}\text{T}\text{л}^{-1}$, природная распространённость 100%.

Для регистрации спектра ЯМР ¹⁹F необходимо 1 - 5 мг вещества.

Шкала химических сдвигов в ЯМР ¹⁹F

Стандарт – CFCl₃ с $\delta = 0$ м.д.

Структурный фрагмент	Хим. сдвиг, б м.д.
R–CH ₂ F	-200 ÷ -230
-CH=CF-	-120 ÷ -130
ArF	-105 ÷ -130
-CO–CF ₃	-65 ÷ -75
Ar–CF ₃	-55 ÷ -70

Спектр ЯМР ¹⁹F соединения

Спектроскопия ЯМР на других ядрах: ³¹P, ²⁹Si, ²H(D) и пр.

Спектр ЯМР ²⁹Si соединения

Ядерный магнитный резонанс

Спектр ЯМР ²H(D)

соединения

Динамический ЯМР

Спектроскопия ЯМР – мощный и тонкий инструмент для наблюдения и характеристики динамических внутри- и межмолекулярных процессов.

Ядерный магнитный резонанс

Методы двумерной спектроскопии ЯМР

<u>Ядерный магнитный резонанс</u>

<u>Ядерный магнитный резонанс</u>

Двумерный спектр **ЯМР** – трёхмерная зависимость интенсивности сигнала ЯМР от хим. сдвигов или констант ССВ, полученная в результате специальной последовательности радиочастотных импульсов, возбуждающих ядерные переходы.

Сигнал в двумерном ЯМР

Ядерный магнитный резонанс
Корреляционная спектроскопия (COrrelation SpectroscopY - COSY):

- **1.** ¹H-¹H COSY;
- 2.¹³C-¹H COSY;

3. Ядерный эффект Оверхаузера(NOESY - Nuclear Overhauser Effect SpectroscopY).

<u>Ядерный магнитный резонанс</u>

¹H-¹H COSY – появление в спектре недиагональных (кросс-пиков) для протонов, связанных спин-спиновым взаимодействием.

¹³C-¹H COSY – пики в спектре соответствуют непосредственно связанным ядрам ¹³С и ¹Н через одну связь с константой ССВ ¹J_{C-H}.

HETCOR – HETeronuclear CORrelation – гетероядерная корреляция

Регистрация сигналов в спектре, отвечающих непосредственно связанным ядрам ¹³С и ¹Н через одну связь.

HSQC – Heteronuclear Single Quantum Correlation –гетероядерная одноквантовая корреляция

HMQC – Heteronuclear Multiple Quantum Correlation – гетероядерная многоквантовая корреляция Ядерный магнитный резонанс

Спектр НМQС соединения

Ядерный магнитный резонанс

HMBC – Heteronuclear Multiple Bond Correlation

– гетероядерная многосвязевая

корреляция

– пики в спектре соответствуют ядрам 13 С и 1 Н связанным через 2 или 3 связи с константами ${}^{2}J_{C-H}$ и ${}^{3}J_{C-H}$.

Спектр НМВС соединения

Ядерный эффект Оверхаузера (NOESY - Nuclear Overhauser Effect Spectroscopy)

 позволяет определять пространственно сближенные протоны путем избирательного облучения сигналов.

Спектры соединения – проблема установления конфигурации заместителей в пятичленном цикле

<u>Ядерный магнитный резонанс</u>

Спектр ЯМР ¹Н соединения (CDCl₃, 400 МГц)

<u>Ядерный магнитный резонанс</u>

Спектр ЯМР ¹⁹F соединения (CDCl₃, 100 МГц)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (мд) Ядерный магнитный резонанс

Ядерный магнитный резонанс

f1 (мд)

Спектры соединения – проблема установления конфигурации заместителей при связи С=С

Спектр ЯМР ¹Н соединения (CDCl₃, 400 МГц)

Ядерный магнитный резонанс

Спектр ЯМР ¹⁹F соединения (CDCl₃, 100 МГц)

Ядерный магнитный резонанс

Спектр ЯМР ¹³С соединения (СDСl₃, 100 МГц)

Спектр DEPT соединения (CDCl₃, 100 МГц)

Спектр NOESY H-Н соединения (CDCl₃, 400 МГц)

Рекомендуемая литература

- Преч Э., Бюльманн Ф., Аффольтер К.
 Определение строения органических соединений.
 М: Мир, 2006.
- 2. Ершов Б.А. Спектроскопия ЯМР в органической химии. СПб., 1995.
- 3. Дероум А. Современные методы ЯМР в химических исследованиях. М: Мир, 1990.

- 4. Гюнтер Х. Введение в курс спектроскопии ЯМР. М: Мир, 1984.
- 5. Сергеев Н.М. Спектроскопия ЯМР. М., 1982.