Печать
Просмотров: 11361

Левин Олег Владиславович

Обновлено

Олег Владиславович Левин

Доктор химических наук, профессор кафедры электрохимии, офис 2209, 2220

E-mail: o.levin@spbu.ru
тел. (812) 4286900

Биография

Профессор СПБГУ Олег Владиславович Левин (кафедры электрохимии) защитил кандидатскую диссертацию в 2004 г. и докторскую диссертацию в 2017 г. по специальности 02.00.05 — электрохимия. В 2005 г. проходил годичную стажировку в Университете Бургундии (Франция). В 2007–2010 гг. работал в компании Самсунг (Южная Корея), где занимался разработкой литий-ионных аккумуляторов.

Возглавляет научную группу, занимающуюся разработкой электродных материалов для химических источников тока на базе металлорганических полимеров. Является руководителем образовательной программы СПбГУ «Химия, Физика и Механика Материалов» (бакалавриат).

Научная деятельность

Области исследований

  • Проводящие полимеры
  • Интеркаляционные соединения
  • Химические источники тока
  • Литий-ионные источники энергии
  • Процессы переноса заряда в плёнках полимерных комплексов металлов с основаниями Шиффа
  • Двойнослойные и гибридные суперконденсаторы

Д.х.н., профессор кафедры электрохимии Левин О. В. занимается разработкой органических материалов для солнечных батарей и аккумуляторов нового поколения, которые могли бы в будущем заменить привычные литий-ионные аккумуляторы. Преимуществом таких источников тока является существенное снижение воздействия на окружающую среду, как при производстве, так и при утилизации аккумуляторов, отсутствие в составе редких элементов, механическая гибкость. Прототипы аккумуляторов, собранные на основе разработанных материалов, показали возможность работы в условиях низких температур, до –70 ºС, что делает их незаменимыми в климатических условиях России. Разработками заинтересовались представители отечественной и зарубежной промышленности, в 2018 г. СПбГУ подписал рамочное соглашение о сотрудничестве по этой тематике с Шанхайским Институтом Космических Источников Тока, крупнейшим производителем аккумуляторов для космической программы КНР.

Учебная работа

Читаемые курсы лекций

  • Электрохимия
  • Литиевые источники тока
  • Новые тенденции в электрохимических источниках энергии
  • Фотоэлектрохимические преобразования солнечной энергии (на английском языке)

Публикации

Общее число публикаций — 61

  1. Apraksin R. V et al. Electrochemical synthesis and characterization of poly [Ni(CH3Osalen)] with immobilized poly(styrenesulfonate) anion dopants // Electrochim. Acta. 2021. Т. 368.
  2. Strelnikov A.A. et al. Switching Competition between Electron and Energy Transfers in Porphyrin-Fullerene Dyads // J. Phys. Chem. B. 2020. Т. 124, № 48. С.10899–10912.
  3. Lukyanov D.A., Borisova A.S., Levin O. V. 6,6′-{[ethane-1,2-diylbis(Azaneylylidene)] bis(methaneylylidene)}bis [2-(hexyloxy)phenolato] nickel(ii) // Molbank. 2020. Т. 2020, № 4. С.1–5.
  4. Beletskii E. et al. Resistivity-temperature behavior of intrinsically conducting bis(3-methoxysalicylideniminato)nickel polymer // Polymers (Basel). 2020. Т. 12, № 12. С.1–10.
  5. Shakirova J.R. et al. Targeted Synthesis of NIR Luminescent Rhenium Diimine cis,trans-[Re(NN)(CO)2(L)2]n+ Complexes Containing N-Donor Axial Ligands: Photophysical, Electrochemical, and Theoretical Studies // Chempluschem. 2020. Т. 85, № 11. С.2518–2527.
  6. Chuprun S. et al. Mutually isomeric 2-and 4-(3-nitro-1,2,4-triazol-1yl)pyrimidines inspired by an antimycobacterial screening hit: Synthesis and biological activity against the eskape panel of pathogens // Antibiotics. 2020. Т. 9, № 10. С.1–21.
  7. Chepurnaya I.A. et al. Redox-conducting polymers based on metal-salen complexes for energy storage applications // Pure Appl. Chem. 2020. Т. 92, № 8. С.1239–1258.
  8. Katlenok E.A. et al. Supramolecular Assembly of Metal Complexes by (Aryl)I⋅⋅⋅dz2 [PtII] Halogen Bonds // Chem. - A Eur. J. 2020. Т. 26, № 34. С.7692–7701.
  9. Alekseeva E. et al. Bimetallic Cu/Pt oxygen reduction reaction catalyst for fuel cells cathode materials // Catalysts. 2020. Т. 10, № 6. С.1–14.
  10. Beletskii E. V et al. Nickel salicylaldoxime-based coordination polymer as a cathode for lithium-ion batteries // Energies. 2020. Т. 13, № 10.
  11. Petukhova Y. V et al. Capping agents as a novel approach to control VO2 nanoparticles morphology in hydrothermal process: Mechanism of morphology control and influence on functional properties // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020. Т. 255.
  12. Efimenko Z.M. et al. The (Dioximate)NiII/I2 System: Ligand Oxidation and Binding Modes of Triiodide Species // Inorg. Chem. 2020.
  13. Beletskii E. V et al. Overcharge cycling effect on the surface layers and crystalline structure of LiFePO4 cathodes of Li-ion batteries // Energies. 2019. Т. 12, № 24.
  14. Yang Y. et al. 2020 Roadmap on gas-involved photo- and electro- catalysis // Chinese Chem. Lett. 2019. Т. 30, № 12. С.2089–2109.
  15. Stel’mashuk T.A., Alekseeva E. V, Levin O. V. Mixed Platinum–Nickel Catalysts of Oxygen Reduction // Russ. J. Electrochem. 2019. Т. 55, № 11. С.1092–1097.
  16. Lukyanov D.A. et al. Synthesis and electrochemical properties of poly(3,4-dihydroxystyrene) and its composites with conducting polymers // Synth. Met. 2019. Т. 256.
  17. Petukhova Y. V et al. Polymer composites containing dispersed VO2 of various polymorphs: Effects of polymer matrix on functional properties // Mater. Chem. Phys. 2019. Т. 235.
  18. Yankin A.N. et al. Aryl-Aryl Coupling of Salicylic Aldehydes through Oxidative CH-activation in Nickel Salen Derivatives // ChemistrySelect. 2019. Т. 4, № 30. С.8886–8890.
  19. Beletskii E. V et al. The Effect of Electrode Potential on the Conductivity of Polymer Complexes of Nickel with Salen Ligands // Russ. J. Electrochem. 2019. Т. 55, № 4. С.339–345.
  20. Samokhvalova S.A. et al. New Bis(salicylideneiminate) Nickel(II) Complexes with Carboxyethylene Linker Connecting Imine Groups and Their Electrochemical Polymerization // Russ. J. Gen. Chem. 2019. Т. 89, № 4. С.852–855.
  21. Androsov D. V et al. Photogalvanic eff ect in porphyrin-pyrrolo[3′,4′:1,9]-(C60-I h)[5,6]fullerene-2′,5′-dicarboxylate systems // Russ. Chem. Bull. 2019. Т. 68, № 4. С.825–831.
  22. Vereshchagin A.A. et al. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices // Electrochim. Acta. 2019. Т. 295. С.1075–1084.
  23. Lukyanov D.A. et al. Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media // Photochem. Photobiol. Sci. 2019. Т. 18, № 8. С.1982–1989.
  24. Wang D. et al. Dual-nitrogen-source engineered Fe-Nx moieties as a booster for oxygen electroreduction // J. Mater. Chem. A. 2019. Т. 7, № 18. С.11007–11015.
  25. Konev A.S. et al. Polymeric Metal Salen-Type Complexes as Catalysts for Photoelectrocatalytic Hydrogen Peroxide Production // ChemElectroChem. 2018. Т. 5, № 21. С.3138–3142.
  26. Lu X. et al. Highly Dispersed Cu−NX Moieties Embedded in Graphene: A Promising Electrocatalyst towards the Oxygen Reduction Reaction // ChemElectroChem. 2018. Т. 5, № 21. С.3323–3329.
  27. Novozhilova M. V et al. Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases // Russ. J. Electrochem. 2018. Т. 54, № 10. С.769–774.
  28. Petukhova Y. V et al. Fabrication of composite nanoparticles based on VO2 with given structure and its optical and electrochemical performance // J. Phys. Chem. Solids. 2018. Т. 121. С.128–138.
  29. Kuznetsov N. et al. Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes // Electrochim. Acta. 2018. Т. 271. С.190–202.
  30. Ershov V.A. et al. Effect of Structure of Polymeric Nickel Complexes with Salen-Type Ligands on the Rate of Their Electroactivity Decay in Solutions of Water-Containing Electrolytes // Russ. J. Gen. Chem. 2018. Т. 88, № 2. С.277–283.
  31. Alekseeva E. V et al. Dependence of stability of the polymerizesd nickel complexes with schiff bases on the structure of the ligand diimine bridge // ECS Transactions. 2018. Т. 87, № 1. С.167–177.
  32. Eliseeva S.N. et al. Nickel-Salen Type Polymers as Cathode Materials for Rechargeable Lithium Batteries // Macromol. Chem. Phys. 2017. Т. 218, № 24.
  33. Grevtsev A.S., Levin O. V, Tverjanovich A.S. Microwave assisted polyol synthesis of CuGa Se 2 nanoparticles for solar cell application // Funct. Mater. Lett. 2017. Т. 10, № 4.
  34. Anishchenko D. V, Levin O. V, Malev V. V. Double Layer Structural Effects in Cyclic Voltammetry Curves Complicated with Non-Equilibrium Injection of Charge Carriers into Redox Polymer Films // Electrochim. Acta. 2017. Т. 241. С.375–385.
  35. Alekseeva E. V et al. Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties // Electrochim. Acta. 2017. Т. 225. С.378–391.
  36. Vereschagin A.A. et al. Water-stable [Ni(salen)]-type electrode material based on phenylazosubstituted salicylic aldehyde imine ligand // New J. Chem. 2017. Т. 41, № 22. С.13918–13928.
  37. Novozhilova M. V et al. Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases // Russ. J. Electrochem. 2016. Т. 52, № 12. С.1183–1190.
  38. Vereshchagin A.A. et al. Interaction of amines with electrodes modified by polymeric complexes of Ni with salen-type ligands // Electrochim. Acta. 2016. Т. 211. С.726–734.
  39. Konev A.S. et al. Photocurrent in Multilayered Assemblies of Porphyrin-Fullerene Covalent Dyads: Evidence for Channels for Charge Transport // ChemSusChem. 2016. Т. 9, № 7. С.676–686.
  40. Anishchenko D. V, Levin O. V, Malev V. V. Quasi-equilibrium voltammetric curves of polaron-conducting polymer films // Electrochim. Acta. 2016. Т. 188. С.480–489.
  41. Eliseeva S.N. et al. New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials // Mater. Lett. 2015. Т. 161. С.117–119.
  42. Levin O. V, Kuznetsov N.A. Hydrogen evolution reactions on carbon materials potentially useful in double-layer supercapacitors // Russ. J. Gen. Chem. 2015. Т. 85, № 12. С.2699–2702.
  43. Smirnova E.A. et al. New functional materials based on conductive polymer—metal complexes modified with metallic nanoelectrodes // Russ. Chem. Bull. 2015. Т. 64, № 8. С.1919–1925.
  44. Eliseeva S.N. et al. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries // Russ. J. Appl. Chem. 2015. Т. 88, № 7. С.1146–1149.
  45. Sizov V. V et al. Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study // J. Solid State Electrochem. 2015. Т. 19, № 2. С.453–468.
  46. Tolstoy V.P. et al. Direct synthesis of Ni2Al(OH)7-x(NO3)x·nH2O layered double hydroxide nanolayers by SILD and their capacitive performance // Mater. Lett. 2015. Т. 139. С.4–6.
  47. Konev A.S. et al. Synthesis of new porphyrin-fullerene dyads capable of forming charge-separated states on a microsecond lifetime scale // Chem. - A Eur. J. 2015. Т. 21, № 3. С.1237–1250.
  48. Levin O. V et al. Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components // Int. J. Electrochem. Sci. 2015. Т. 10, № 10. С.8175–8189.
  49. Kondratiev V. V, Levin O. V, Malev V. V. Charge transfer and electrochemical reactions at electrodes modified with pristine and metal-containing films of conducting polymers // Advances in Conducting Polymers Research. 2014. 79–151 p.
  50. Malev V. V, Levin O. V, Kondratiev V. V. Voltammetry of electrodes modified with pristine and composite polymer films; Theoretical and experimental aspects to the memory of Prof. Veniamin Levich. // Electrochim. Acta. 2014. Т. 122. С.234–246.
  51. Levin O., Kazakov S., Antipov E. Solid energy: A report on the 18th international symposium on the reactivity of solids // Powder Diffr. 2014. Т. 29, № 4. С.404–406.
  52. Konev A.S. et al. The implication of 1,3-dipolar cycloaddition of azomethine ylides to the synthesis of main-chain porphyrin oligomers // Macromol. Chem. Phys. 2014. Т. 215, № 6. С.516–529.
  53. Malev V. V, Levin O. V, Timonov A.M. Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films // Electrochim. Acta. 2013. Т. 108. С.313–320.
  54. Levin O. V et al. Charge transfer processes on electrodes modified by polymer films ofmetal complexes with Schiff bases // Electrochim. Acta. 2013. Т. 109. С.153–161.
  55. Malev V. V, Levin O. V. Criteria of the absence of short-range interactions within electroactive polymer films // Electrochim. Acta. 2012. Т. 80. С.426–431.
  56. Malev V. V, Levin O. V. Electrical currents resulting from reduction/oxidation processes of tested particles on “inner” and “outer” surfaces of electroactive polymer films // Russ. J. Electrochem. 2012. Т. 48, № 4. С.375–387.
  57. Malev V. V, Levin O. V. Electrical currents resulting from reduction/oxidation processes of tested particles on electrodes modified with metal-containing polymer films // Electrochim. Acta. 2011. Т. 56, № 10. С.3586–3596.
  58. Skompska M. et al. Mixed solutions of silver cation and chloride anion in acetonitrile: Voltammetric and EQCM study // Phys. Chem. Chem. Phys. 2010. Т. 12, № 35. С.10525–10535.
  59. Malev V. V, Levin O. V. Limiting current to a rotating disk electrode modified with an electroactive polymeric film in the presence of a redox pair in the adjacent solution volume // Russ. J. Electrochem. 2008. Т. 44, № 1. С.91–97.
  60. Levin O. V, Kondratiev V. V, Malev V. V. Using the rotating disk electrode for evaluating film porosity of conductive polymers // Russ. J. Electrochem. 2008. Т. 44, № 1. С.98–103.
  61. Malev V. V, Levin O. V, Vorotyntsev M.A. Effect of interparticle interactions on the rate of injection of charge carriers into electroactive polymer films // Russ. J. Electrochem. 2007. Т. 43, № 9. С.1016–1025.
  62. Malev V. V, Levin O. V, Vorotyntsev M.A. Model treatment of double layer charging in electroactive polymer films with two kinds of charge carriers // Electrochim. Acta. 2006. Т. 52, № 1. С.133–151.
  63. Levin O., Kondratiev V., Malev V. Charge transfer processes at poly-o-phenylenediamine and poly-o-aminophenol films // Electrochim. Acta. 2005. Т. 50, № 7–8. С.1573–1585.
  64. Levin O. V, Kondrat’ev V. V, Malev V. V. Electrochemical properties of poly-o-phenylenediamine films in solutions with variable concentration of hydronium ions // Russ. J. Electrochem. 2004. Т. 40, № 1. С.91–98.
  65. Levin O. V, Kondrat’ev V. V, Malev V. V. Electrochemical properties of poly(o-phenylene diamine) in solutions with variable concentration of hydrogen ions // Elektrokhimiya. 2004. Т. 40, № 1. С.106–114.
  66. Kurdakova V. V et al. Cyclic voltammetry and the impedance of electrodes modified by indium(III) hexacyanoferrate films // Russ. J. Electrochem. 2002. Т. 38, № 11. С.1192–1199.
  67. Kurdakova V. V et al. Cyclic voltammetry and impedance of electrodes modified with indium(III) hexacyanoferrate films // Elektrokhimiya. 2002. Т. 38, № 11. С.1319–1326.