Просмотров: 219

Репрезентативные публикации за июль и август 2018 г.


M. A. Kinzhalov, M. V. Kashina, E. A. Mozheeva, A. S. Mikherdov, D. M. Ivanov, A. S. Novikov, A. S. Smirnov, M. A. Kryukova, A. Yu. Ivanov, S. N. Smirnov, V. Yu. Kukushkin, K. V. Luzyanin, Dramatically enhanced solubility of halide-containing organometallic species in diiodomethane: the role of solvent•••complex halogen bonding Angew. Chem. Int. Ed., 57 (2018), doi: 10.1002/anie.201807642

Роль галогенных связей в растворимости металлорганических соединений.


In the current study, we evaluated the solubility of a number of organometallic species and showed that it is noticeably improved in diiodomethane when compared to other haloalkane solvents. The better solvation properties of CH2I2 were associated with the substantially better σ‐hole‐donating ability of this solvent, which results in the formation of uniquely strong solvent–(metal complex) halogen bonding. The strength of the halogen bonding is attenuated by the introduction of additional halogen atoms in the organometallic species owing to the competitive formation of more favourable intermolecular complex–complex halogen bonding. The exceptional solvation properties of diiodomethane and its inertness towards organometallic species make this solvent a good candidate for NMR studies, in particular, for the acquisition of spectra of insensitive spins.

Zimin D.P., Dar’in D.V., Rassadin V.A., Kukushkin V. Yu. Gold-Catalyzed Hydrohydrazidation of Terminal Alkynes Org. Lett., 20 (16), pp 4880–4884, 2018, doi: 10.1021/acs.orglett.8b02019

Статья посвящена неописанной ранее в литературе реакции между терминальными ацетиленами, активированными комплексами золота (I), и различными гидразидами. В результате реакции получаются практически значимые кето-N-ацилгидразоны с выходами от хороших до отличных. Реакция изучена на широком круге субстратов, обладает высокой толерантностью к функциональным группам, в ней используются простые субстраты, реакция проводится в мягких условиях.


Facile gold-catalyzed hydrohydrazidation of alkynes with various hydrazides R2CONHNH2 (R = Alk or Ar; including those with an additional nucleophilic moiety) in the presence of Ph3PAuNTf2 (6 mol %) leading to a wide range of substituted keto-N-acylhydrazones (18 examples) in excellent to good yields (99–66%) is reported. This novel metal-catalyzed coupling proceeds under mild conditions (chlorobenzene, 60 °C), exhibits high functional group tolerance, and is insensitive to the electronic and steric effects of the substituents in the reactants.

Jack C. Gee, Beth A. Fuller, Hannah-Marie Lockett, Gita Sedghi, Craig M. Robertson, Konstantin V. Luzyanin Visible light accelerated hydrosilylation of alkynesusing platinum–[acyclic diaminocarbene] photocatalysts, Chem. Comm. 2018, 54, 9450–9453, doi: 10.1039/c8cc04287j

Применение комплексов платины с диаминокарбеновыми лигандами в качестве фотокатализаторов реакции гидросилилирования алкинов. Реакция гидросилилирования с использование данных соединений значительно ускоряется при помощи использования видимого синего света; применения внешнего фотокатализатора при этом не требуется. Границы применения метода включают терминальные и интернальные алкины и ряд гидросиланов.


Platinum–[diaminocarbene] complexes work as transition-metal photocatalysts for the hydrosilylation of alkynes. A catalytic system operates under visible light irradiation (blue LED) enabling the conversion of a range of terminal and internal alkynes to respective vinyl silanes in excellent yields.

Pomogaeva A.V., Timoshkin A.Y., Scheer M.  Why do B-P and Al-P polymers differ? Structures, stability and electronic properties of chain and ring [H2PEH2]n oligomers (E = B, Al; n = 1-15), Chem. Eur. J., V. 24, 2018, doi: 10.1002/chem.201803008

Статья посвящена анализу структурных, энергетических и электронных характеристик олигомерных соединений (H2EPH2)n, E=B,Al; n=1-15 на основании квантово-химических расчетов различными DFT методами. Рассмотрены цепные и циклические олигомеры и показано, что они имеют принципиально разные электронные свойства.


Chain and ring [H2PEH2]n oligomers (E = B, Al; n = 2‐15) have been computationally studied at the B3LYP/def2‐TZVP level of theory. A strong tendency to cyclization is found for the chain Al‐P oligomers with n > 7, while analogous long B‐P oligomers can exist as chain structures. Subsequent oligomerization enthalpies approach each other very closely for the ring and chain oligomers with the increase of n. However, these oligomers have very different electronic properties with band gaps below 0.2 eV for the chain [H2PBH2]15 and more than 5 eV for the ring isomer [H2PEH2]15. The MOs in the ring oligomers are highly delocalized, while, for the chain isomers, HOMO and LUMO are localized at the different ends of the oligomeric chain.

Alexandra V Smikhovskaia, Maxim S Panov, Ilya I Tumkin, Evgeniia M Khairullina, Sergey S Ermakov, Irina A Balova, Mikhail N Ryazantsev, Vladimir A Kochemirovsky  In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials, Analytica Chimica Acta, 2018, doi: 10.1016/j.aca.2018.07.042

Предложен синтез ряда биметаллических композитных сенсоров. Полученные сенсоры были протестированы на определение глюкозы и пероксида водорода.


We report one-step in situ laser-induced synthesis of the conductive copper microstructures doped with iron, zinc, nickel, and cobalt with highly developed surface area. It was observed that the presence of chlorides of the aforementioned metals in the solutions used in our experiments increases the deposition rate and the amount of copper in the resulting deposits; it also leads to the deposit miniaturization. The laser deposition from solutions containing cobalt (II) chloride of concentration more than 0.003 M results in fabrication of copper microelectrode with better electrochemical properties than those deposited from solutions containing chlorides of other metals of the same concentration. Moreover, copper microelectrode doped with cobalt has demonstrated good reproducibility and long-run stability as well as sensitivity and selectivity towards determination of hydrogen peroxide (limit of detection-0.2 μM) and d-glucose (limit of detection-2.2 μM). Thus, in this article we have shown the opportunity to manufacture two-phase microcomposite materials with good electrical conductivity and electrochemical characteristics using in situ laser-induced metal deposition technique. These materials might be quite useful in development of new perspective sensors for non-enzymatic detection of such important analytes as hydrogen peroxide and glucose.

Hegen O., Virovets A.V., Timoshkin A.Y., Scheer M.   The Lewis base stabilized diphenylsubstituted Arsanylborane – A versatile building block for arsanylborane oligomers, Chem. Eur. J., V. 24, 2018, doi: 10.1002/chem.201804341

Синтезированы и охарактеризованы донорно-стабилизировнные фенилзамещённые арсанилбораны. Исследованы их реакции с кислотами Льюиса и окисление элементами 16 группы.


The synthesis and properties of the Lewis base stabilized diphenylsubstituted arsanylborane Ph2AsBH2SMe2 (1) and Ph2AsBH2NMe3 (2) are reported. These compounds were obtained by the reaction of KAsPh2 with IBH2‐LB (LB = SMe2, NMe3). Compounds 1 and 2 can be used as starting materials for oligomeric/polymeric arsinoboranes. The neutral species, H3B‐Ph2AsBH2NMe3 (3) and Br3B‐Ph2AsBH2NMe3 (4), are synthesized by the reaction with either H3B or Br3B. Through reaction with IBH2‐LB (LB = SMe2, NMe3), the cationic oligomeric group 13/15 compounds [(Me3NBH2Ph2AsBH2NMe3)(I)] (5) and [{H2B(Ph2AsBH2NMe3)2}(I)] (6) were synthesized. All compounds were completely characterized. In addition, the oxidation of Ph2AsBH2NMe3 with chalcogenes was studied. Whereas both the sulfur Ph2As(S)BH2NMe3 (7b) and selenium Ph2As(Se)BH2NMe3 (7c) oxidation products could be isolated and fully characterized, the bis(trimethylsilyl)peroxide oxidated arsinoborane Ph2As(O)BH2NMe3 (7a) is not stable enough and could only be characterized in solution. DFT computations support the decomposition pathway of this compound.